Skip to main content

Advertisement

Log in

A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a special class of two-stage stochastic integer programming problems with binary variables appearing in both stages. The class of problems we consider constrains the second-stage variables to belong to the intersection of sets corresponding to first-stage binary variables that equal one. Our approach seeks to uncover strong dual formulations to the second-stage problems by transforming them into dynamic programming (DP) problems parameterized by first-stage variables. We demonstrate how these DPs can be formed by use of binary decision diagrams, which then yield traditional Benders inequalities that can be strengthened based on observations regarding the structure of the underlying DPs. We demonstrate the efficacy of our approach on a set of stochastic traveling salesman problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch-and-bound algorithm for two-stage stochastic integer programs. Math. Program. 100(2), 355–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  3. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 6, 509–516 (1978)

    Article  MATH  Google Scholar 

  4. Alonso-Ayuso, A., Escudero, L.F., Ortuno, M.T.: BFC, a branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0–1 programs. Eur. J. Oper. Res. 151(3), 503–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascheuer, N., Fischetti, M., Grötschel, M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. 90(3), 475–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S.E. (ed.) Lecture Notes in Computer Science: Experimental and Efficient Algorithms, vol. 3503, pp. 452–463. Springer, Berlin (2005)

    Chapter  MATH  Google Scholar 

  8. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: D. Applegate, G.S. Brodal (eds.) Proceedings of the Meeting on Algorithm Engineering & Experiments, pp. 158–165. Society for Industrial and Applied Mathematics, New Orleans, LA (2007)

  9. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1), 37–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carøe, C.C., Tind, J.: L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Program. 83(1), 451–464 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller–Tucker–Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Escudero, L.F., Garín, M.A., Merino, M., Pérez, G.: An exact algorithm for solving large-scale two-stage stochastic mixed-integer problems: some theoretical and experimental aspects. Eur. J. Oper. Res. 204(1), 105–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs. Math. Program. 144(1), 39–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haneveld, W.K.K., Stougie, L., van der Vlerk, M.H.: Simple integer recourse models: convexity and convex approximations. Math. Program. 108(2), 435–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haneveld, W.K.K., van der Vlerk, M.H.: Stochastic integer programming: general models and algorithms. Ann. Oper. Res. 85, 39–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) Lecture Notes in Computer Science: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, vol. 7874, pp. 94–110. Springer, Berlin (2013)

    Google Scholar 

  20. Kell, B., van Hoeve, W.J.: An MDD approach to multidimensional bin packing. In: Gomes, C., Sellmann, M. (eds.) Lecture Notes in Computer Science: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, vol. 7874, pp. 128–143. Springer, Berlin (2013)

    Google Scholar 

  21. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laporte, G., Louveaux, F.V., van Hamme, L.: An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3), 415–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38(4), 985–999 (1959)

    Article  MathSciNet  Google Scholar 

  24. Lozano, L.: Exact algorithms for mixed-integer multilevel programming problems. Ph.D. thesis, Clemson University, Clemson, SC (2017)

  25. Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing problems. Manage. Sci. 50(6), 786–796 (2004)

    Article  MATH  Google Scholar 

  26. Ntaimo, L., Sen, S.: The million-variable “march” for stochastic combinatorial optimization. J. Glob. Optim. 32(3), 385–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schultz, R.: Stochastic programming with integer variables. Math. Program. 97(1), 285–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schultz, R., Stougie, L., van der Vlerk, M.H.: Solving stochastic programs with integer recourse by enumeration: a framework using Gröbner basis. Math. Program. 83(1), 229–252 (1998)

    MATH  Google Scholar 

  29. Sen, S.: Algorithms for stochastic mixed-integer programming models. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optim., pp. 515–558. Elsevier, Amsterdam, The Netherlands (2005)

    Chapter  Google Scholar 

  30. Sen, S., Higle, J.L.: The \({C}^3\) theorem and a \({D}^2\) algorithm for large-scale stochastic mixed-integer programming: set convexification. Math. Program. 104(1), 1–20 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Sen, S., Sherali, H.D.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Math. Program. 106(2), 203–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  33. Sherali, H.D., Fraticelli, B.M.P.: A modification of Benders’ decomposition algorithm for discrete subproblems: an approach for stochastic programs with integer recourse. J. Glob. Optim. 22(1), 319–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sherali, H.D., Smith, J.C.: Two-stage stochastic risk threshold and hierarchical multiple risk problems: models and algorithms. Math. Program. 120(2), 403–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, P., Veelenturf, L.P., Dabia, S., Van Woensel, T.: The time-dependent capacitated profitable tour problem with time windows and precedence constraints. Eur. J. Oper. Res. 264(3), 1058–1073 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. van der Vlerk, M.H.: Convex approximations for complete integer recourse models. Math. Program. 99(2), 297–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the remarks of two anonymous referees and a guest editor, whose comments led to a greatly improved version of this paper. Dr. Smith gratefully acknowledges the support of the Air Force Office of Scientific Research under Grant FA9550-12-1-0353 and the Office of Naval Research under Grants N00014-13-1-0036 and N00014-17-1-2421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cole Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 183 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, L., Smith, J.C. A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. 191, 381–404 (2022). https://doi.org/10.1007/s10107-018-1315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1315-z

Keywords

Mathematics Subject Classification

Navigation