Advertisement

Mathematical Programming

, Volume 170, Issue 1, pp 237–266 | Cite as

Theoretical challenges towards cutting-plane selection

  • Santanu S. Dey
  • Marco Molinaro
Full Length Paper Series B
  • 317 Downloads

Abstract

While many classes of cutting-planes are at the disposal of integer programming solvers, our scientific understanding is far from complete with regards to cutting-plane selection, i.e., the task of selecting a portfolio of cutting-planes to be added to the LP relaxation at a given node of the branch-and-bound tree. In this paper we review the different classes of cutting-planes available, known theoretical results about their relative strength, important issues pertaining to cut selection, and discuss some possible new directions to be pursued in order to accomplish cutting-plane selection in a more principled manner. Finally, we review some lines of work that we undertook to provide a preliminary theoretical underpinning for some of the issues related to cut selection.

Mathematics Subject Classification

90C11 90C57 

Notes

Acknowledgements

We would like to thank Tobias Achterberg, Domenico Salvagnin and Roland Wunderling for their help with preparing this manuscript. We would also like to thank anonymous reviewers for their feedback that greatly improved the presentation of this manuscript. Santanu S. Dey would like to acknowledge the support of NSF CMMI Grant # 1562578. Marco Molinaro would like to acknowledge the support of CNPq grants Universal #431480/2016-8 and Bolsa de Produtividade em Pesquisa #310516/2017-0.

References

  1. 1.
    Achterberg, T.: Exploiting degeneracy in MIP. In: Talk at Aussois 22nd Combinatorial Optimization Workshop. http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf (2018). Accessed 1 Feb 2018
  2. 2.
    Achterberg, T.: LP basis selection and cutting planes. In: Talk at MIP. http://www2.isye.gatech.edu/mip2010/program/program.pdf (2010). Accessed 1 Feb 2018
  3. 3.
    Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)Google Scholar
  4. 4.
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-commodity flow structures in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Agra, A., Constantino, M.F.: Lifting two-integer knapsack inequalities. Math. Program. 109, 115–154 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approximation of strong branching. INFORMS J. Comput. 29(1), 185–195 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Alvarez, A.M., Wehenkel, L., Louveaux, Q.: Machine learning to balance the load in parallel branch-and-bound. http://hdl.handle.net/2268/181086 (2015). Accessed 1 Feb 2018
  9. 9.
    Amaldi, E., Coniglio, S., Gualandi, S.: Coordinated cutting plane generation via multi-objective separation. Math. Program. 143(1–2), 87–110 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Andersen, K., Cornuéjols, G., Li, Y.: Reduce-and-split cuts: improving the performance of mixed integer Gomory cuts. Manage. Sci. 51, 1720–1732 (2005)zbMATHGoogle Scholar
  11. 11.
    Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. 102, 457–493 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) Proceedings 12th Conference on Integer Programming and Combinatorial Optimization, pp. 30–42. Springer (2007)Google Scholar
  13. 13.
    Andreello, G., Caprara, A., Fischetti, M.: Embedding \(\{0, 1/2\}\)-cuts in a branch-and-cut framework: a computational study. INFORMS J. Comput. 19(2), 229–238 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Aráoz, J., Evans, L., Gomory, R.E., Johnson, E.L.: Cyclic groups and knapsack facets. Math. Program. 96, 377–408 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Atamtürk, A.: On the facets of the mixed-integer knapsack polyhedron. Math. Program. 98, 145–175 (2003)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Atamtürk, A.: Sequence independent lifting for mixed-integer programming. Oper. Res. 52, 487–490 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Atamtürk, A., Günlük, O.: Mingling: mixed-integer rounding with bounds. Math. Program. 123(2), 315–338 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Atamtürk, A., Küçükyavuz, S., Tezel, B.: Path cover and path pack inequalities for the capacitated fixed-charge network flow problem. SIAM J. Optim. 27(3), 1943–1976 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in integer programming. Eur. J. Oper. Res. 121, 40–55 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Au, Y.H., Tunçel, L.: A comprehensive analysis of polyhedral lift-and-project methods. SIAM J. Discrete Math. 30(1), 411–451 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Au, Y.H., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators. ArXiv preprint arXiv:1608.07647 (2016)
  22. 22.
    Averkov, G., Basu, A.: Lifting properties of maximal lattice-free polyhedra. Math. Program. 154(1–2), 81–111 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Averkov, G., Basu, A., Paat, J.: Approximation of corner polyhedra with families of intersection cuts. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 51–62. Springer (2017)Google Scholar
  24. 24.
    Awate, Y., Cornuéjols, G., Guenin, B., Tunçel, L.: On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs. Math. Program. 150(2), 459–489 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Balas, E.: Facets of the knapsack polytope. Math. Program. 8, 146–164 (1975)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Balas, E., Bonami, P.: New variants of lift-and-project cut generation from the LP tableau: open source implementation and testing. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 89–103. Springer (2007)Google Scholar
  29. 29.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed integer 0–1 programs. Math. Program. 58, 295–324 (1993)zbMATHGoogle Scholar
  30. 30.
    Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Oper. Res. Lett. 19, 1–9 (1996)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manage. Sci. 42(9), 1229–1246 (1996)zbMATHGoogle Scholar
  32. 32.
    Balas, E., Jeroslow, R.: Strenghtening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)zbMATHGoogle Scholar
  33. 33.
    Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Math. Program. 137(1), 19–35 (2013)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Balas, E., Perregaard, M.: Lift-and-project for mixed 0–1 programming: recent progress. Discrete Appl. Math. 123, 129–154 (2002)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Balas, E., Zemel, E.: Facets of knapsack polytope from minimal covers. SIAM J. Appl. Math. 34, 119–148 (1984)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row cuts from degenerate tableaux. INFORMS J. Comput. 23(4), 578–590 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: On the relative strength of split, triangle and qudrilateral cuts. Math. Program. 126, 281–314 (2011)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35, 704–720 (2010)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating functions. Math. Program. 151(1), 153–189 (2015)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Basu, A., Conforti, M., Di Summa, M.: Optimal cutting planes from the group relaxations. ArXiv preprint arXiv:1710.07672 (2017)
  41. 41.
    Basu, A., Cornuéjols, G., Köppe, M.: Unique minimal liftings for simplicial polytopes. Math. Oper. Res. 37(2), 346–355 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Math. Oper. Res. 37(1), 21–40 (2012)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Basu, A., Cornuéjols, G., Molinaro, M.: A probabilistic analysis of the strength of the split and triangle closures. In: IPCO, pp. 27–38. Springer (2011)Google Scholar
  44. 44.
    Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case. Math. Oper. Res. 40(1), 105–129 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foundations and taxonomy. 4OR 14(1), 1–40 (2016)Google Scholar
  46. 46.
    Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR 14(2), 107–131 (2016)Google Scholar
  47. 47.
    Basu, A., Hildebrand, R., Koppe, M., Molinaro, M.: A \((k+1)\)-slope theorem for the \(k\)-dimensional infinite group relaxation. SIAM J. Optim. 23(2), 1021–1040 (2013)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Basu, A., Hildebrand, R., Molinaro, M.: Minimal cut-generating functions are nearly extreme. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 202–213. Springer (2016)Google Scholar
  49. 49.
    Basu, A., Paat, J.: Operations that preserve the covering property of the lifting region. SIAM J. Optim. 25(4), 2313–2333 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in gomory and johnson’s infinite group problem–III: foundations for the \(k\)-dimensional case with applications to \(k=2\). Math. Program. 163(1), 301–358 (2017)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Bell, D.F., Shapiro, J.F.: A convergent duality theory for integer programming. Oper. Res. 25, 419–434 (1977)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Benchetrit, Y., Fiorini, S., Huynh, T., Weltge, S.: Characterizing polytopes in the 0/1-cube with bounded chvátal-gomory rank. Math. Oper. Res. (2018). https://doi.org/10.1287/moor.2017.0880
  53. 53.
    Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0–1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for stochastic integer programs with continuous recourse. INFORMS J. Comput. 29(1), 77–91 (2017)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations. Math. Program. 161(1–2), 159–192 (2017)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M., Pokutta, S.: Aggregation-based cutting-planes for packing and covering integer programs. Math. Program. (2017).  https://doi.org/10.1007/s10107-017-1192-x
  57. 57.
    Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M.: Lower bounds on the lattice-free rank for packing and covering integer programs. ArXiv preprint arXiv:1710.00031 (2017)
  58. 58.
    Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4(2), 151–179 (2012)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer quadratic programming problems. http://cerc-datascience.polymtl.ca/wp-content/uploads/2018/01/Technical-Report_DS4DM-2017-013.pdf (2017). Accessed 1 Feb 2018
  60. 60.
    Bonami, P., Margot, F.: Cut generation through binarization. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 174–185. Springer (2014)Google Scholar
  61. 61.
    Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discrete Optim. 2(4), 288–307 (2005)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34, 538–546 (2009)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP, Oxford (2013)zbMATHGoogle Scholar
  64. 64.
    Cadoux, F.: Computing deep facet-defining disjunctive cuts for mixed-integer programming. Math. Program. 122(2), 197–223 (2010)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Caprara, A., Fischetti, M.: \(\{ 0,\frac{1}{2} \}\)–Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)zbMATHGoogle Scholar
  66. 66.
    Carøe, C.C.: Decomposition in Stochastic Integer Programming. Ph.D. thesis, Institute of Mathematical Sciences, Department of Operations Research, University of Copenhagen, Denmark (1998)Google Scholar
  67. 67.
    Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)Google Scholar
  68. 68.
    Chandrasekaran, K., Végh, L.A., Vempala, S.S.: The cutting plane method is polynomial for perfect matchings. Math. Oper. Res. 41(1), 23–48 (2016)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Chen, B., Küçükyavuz, S., Sen, S.: Finite disjunctive programming characterizations for general mixed-integer linear programs. Oper. Res. 59(1), 202–210 (2011)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Chen, B., Küçükyavuz, S., Sen, S.: A computational study of the cutting plane tree algorithm for general mixed-integer linear programs. Oper. Res. Lett. 40(1), 15–19 (2012)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Cheung, K.K.H.: Computation of the lasserre ranks of some polytopes. Math. Oper. Res. 32(1), 88–94 (2007)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114(115), 455–499 (1989)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4), 305–337 (1973)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Coleman, T.F.: Large Sparse Numerical Optimization, volume 165 of Lecture Notes in Computer Science, vol. 165. Springer, Berlin (1984)Google Scholar
  75. 75.
    Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and s-free sets. Math. Oper. Res. 40(2), 276–391 (2014)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting. Oper. Res. 59, 569–577 (2009)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2012)zbMATHGoogle Scholar
  78. 78.
    Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y.: Reverse split rank. Math. Program. 154(1–2), 273–303 (2015)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal-Gomory rank. SIAM J. Discrete Math. 29(1), 166–181 (2015)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Conforti, M., Wolsey, L.A.: “Facet” Separation with One Linear Program. Technical report, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) (2016)Google Scholar
  81. 81.
    Coniglio, S., Tieves, M.: On the generation of cutting planes which maximize the bound improvement. In: Bampis, E. (ed.) Experimental Algorithms, pp. 97–109. Springer, Cham (2015)Google Scholar
  82. 82.
    Cook, W.: Cutting-plane proofs in polynomial space. Math. Program. 47(1–3), 11–18 (1990)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26(1), 19–30 (2001)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Cook, W., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe gomory mixed-integer cuts. INFORMS J. Comput. 21(4), 641–649 (2009)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 58, 155–174 (1990)zbMATHGoogle Scholar
  86. 86.
    Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–344 (2013)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Cornuéjols, G.: Revival of the Gomory cuts in the 1990’s. Ann. Oper. Res. 149, 63–66 (2007)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Cornuéjols, G., Dawande, M.: A class of hard small 0–1 programs. INFORMS J. Comput. 11, 205–210 (1999)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Cornuéjols, G., Lemaréchal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106(3), 567–586 (2006)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Cornúejols, G., Li, Y.: Elementary closures for integer programs. Oper. Res. Lett. 28, 1–8 (2001)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Cornuéjols, G., Li, Y.: On the rank of mixed 0–1 polyhedra. Math. Program. 91, 391–397 (2002)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Cornuéjols, G., Li, Y., Vandenbussche, D.: K-cuts: a variation of gomory mixed integer cuts from the LP tableau. INFORMS J. Comput. 15, 385–396 (2003)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Cornuéjols, G., Margot, F., Nannicini, G.: On the safety of gomory cut generators. Math. Program. Comput. 5(4), 345–395 (2013)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Cornuéjols, G., Michini, C., Nannicini, G.: How tight is the corner relaxation? Insights gained from the stable set problem. Discrete Optim. 9(2), 109–121 (2012)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Cornuéjols, G., Lee, D.L.: On some polytopes contained in the 0, 1 hypercube that have a small Chvátal rank. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 300–311. Springer (2016)Google Scholar
  96. 96.
    Cornuéjols, G., Molinaro, M.: A 3-slope theorem for the infinite relaxation in the plane. Math. Program. 142(1), 83–105 (2013)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Crowder, H., Johnson, E.L., Padberg, M.W.: Solving large scale zero-one linear programming problem. Oper. Res. 31, 803–834 (1983)zbMATHGoogle Scholar
  98. 98.
    Dash, S.: Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. Naval Res. Logist. 30, 678–700 (2005)MathSciNetzbMATHGoogle Scholar
  99. 99.
    Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra. Math. Program. 135(1–2), 221–254 (2012)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Dash, S., Goycoolea, M.: A heuristic to generate rank-1 GMI cuts. Math. Program. Comput. 2(3–4), 231–257 (2010)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Dash, S., Goycoolea, M., Günlük, O.: Two-step MIR inequalities for mixed integer programs. INFORMS J. Comput. 22(2), 236–249 (2010)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Dash, S., Günlük, O.: Valid inequalities based on simple mixed-integer sets. Math. Program. 105(1), 29–53 (2006)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Dash, S., Günlük, O.: On mixing inequalities: rank, closure, and cutting-plane proofs. SIAM J. Optim. 20(2), 1090–1109 (2009)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Dash, S., Günlük, O.: On t-branch split cuts for mixed-integer programs. Math. Program. 141(1–2), 591–599 (2013)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Dash, S., Günlük, O., Molinaro, M.: On the relative strength of different generalizations of split cuts. Discrete Optim. 16, 36–50 (2015)MathSciNetzbMATHGoogle Scholar
  106. 106.
    Dash, S., Günlük, O., Vielma, J.P.: Computational experiments with cross and crooked cross cuts. INFORMS J. Comput. 26(4), 780–797 (2014)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Dash, S.: Mixed integer rounding cuts and master group polyhedra. Comb. Optim. Methods Appl. 31, 1–32 (2011)zbMATHGoogle Scholar
  108. 108.
    Dash, S., Dey, S.S., Günlük, O.: On mixed-integer sets with two integer variables. Oper. Res. Lett. 39(5), 305–309 (2011)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. 135, 397–412 (2012)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Del Pia, A.: On the rank of disjunctive cuts. Math. Oper. Res. 37(2), 372–378 (2012)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Dey, S.S.: A note on the split rank of intersection cuts. Math. Program. 130(1), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Dey, S.S., Iroume, A., Molinaro, M.: Some lower bounds on sparse outer approximations of polytopes. Oper. Res. Lett. 43(3), 323–328 (2015)MathSciNetGoogle Scholar
  113. 113.
    Dey, S.S., Iroume, A., Wang, G.: The strength of multi-row aggregation cuts for sign-pattern integer programs. ArXiv preprint arXiv:1711.06963 (2017)
  114. 114.
    Dey, S.S., Lodi, A., Wolsey, L.A., Tramontani, A.: Experiments with two row tableau cuts. In: Eisenbrand, F., Shepherd, B. (eds.) Proceedings 14th Conference on Integer Programming and Combinatorial Optimization, pp. 424–437. Springer (2010)Google Scholar
  115. 115.
    Dey, S.S., Louveaux, Q.: Split rank of triangle and quadrilateral inequalities. Math. Oper. Res. 36(3), 432–461 (2011)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Dey, S.S., Molinaro, M., Wang, Q.: Analysis of sparse cutting planes for sparse MILPs with applications to stochastic MILPs. Math. Oper. Res 43(1), 304–332 (2018)Google Scholar
  117. 117.
    Dey, S.S., Molinaro, M., Wang, Q.: Approximating polyhedra with sparse inequalities. Math. Program. 154, 329–352 (2015)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Dey, S.S., Richard, J.-P.P.: Facets of the two-dimensional infinite group problems. Math. Oper. Res. 33, 140–166 (2008)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Dey, S.S., Richard, J.-P.P.: Relations between facets of low-and high-dimensional group problems. Math. Program. 123(2), 285–313 (2010)MathSciNetzbMATHGoogle Scholar
  120. 120.
    Dey, S.S., Richard, J.-P.P., Li, Y., Miller, L.A.: On the extreme inequalities of infinite group problems. Math. Program. 121, 145–170 (2010)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Dey, S.S., Wolsey, L.A.: Composite lifting of group inequalities and an application to two-row mixing inequalities. Discrete Optim. 7, 256–268 (2010)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20, 2890–2912 (2010)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program. 124(1–2), 143–174 (2010)MathSciNetzbMATHGoogle Scholar
  124. 124.
    Espinoza, D.: Computing with multiple-row Gomory cuts. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Proceedings 13th Conference on Integer Programming and Combinatorial Optimization, pp. 214–224. Springer (2008)Google Scholar
  125. 125.
    Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. 110, 3–20 (2007)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Fischetti, M., Salvagnin, D.: A relax-and-cut framework for gomory mixed-integer cuts. Math. Program. Comput. 3(2), 79–102 (2011)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. Math. Program. 128(1–2), 19–41 (2011)MathSciNetzbMATHGoogle Scholar
  128. 128.
    Gentile, C., Ventura, P., Weismantel, R.: Mod-2 cuts generation yields the convex hull of bounded integer feasible sets. SIAM J. Discrete Math. 20(4), 913–919 (2006)MathSciNetzbMATHGoogle Scholar
  129. 129.
    Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M., Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite 5.0. Technical Report 17-61, ZIB, Takustr.7, 14195 Berlin (2017)Google Scholar
  130. 130.
    Goemans, M.X.: Worst-case comparison of valid inequalities for the TSP. Math. Program. 69, 335–349 (1995)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)MathSciNetzbMATHGoogle Scholar
  132. 132.
    Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, RAND Corporation (1960)Google Scholar
  133. 133.
    Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2, 341–375 (1969)MathSciNetzbMATHGoogle Scholar
  134. 134.
    Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part I. Math. Program. 3, 23–85 (1972)zbMATHGoogle Scholar
  135. 135.
    Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part II. Math. Program. 3, 359–389 (1972)zbMATHGoogle Scholar
  136. 136.
    Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Math. Program. 96, 341–375 (2003)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Gomory, R.E., Johnson, E.L., Evans, L.: Corner polyhedra and their connection with cutting planes. Math. Program. 96, 321–339 (2003)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for mixed 0–1 integer programs. Math. Program. 85, 439–467 (1999)MathSciNetzbMATHGoogle Scholar
  139. 139.
    Guerrero-Garćia, P.: Range-Space Methods for Sparse Linear Programs. Ph.D. thesis, Department of Applied Mathematics, University of Malaga, Spain (2002)Google Scholar
  140. 140.
    Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001)MathSciNetzbMATHGoogle Scholar
  141. 141.
    Guzelsoy, M., Ralphs, T.K.: Duality for mixed-integer linear programs. Int. J. Oper. Res. 4(3), 118–137 (2007)MathSciNetzbMATHGoogle Scholar
  142. 142.
    Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math. Program. 8(1), 179–206 (1975)MathSciNetzbMATHGoogle Scholar
  143. 143.
    He, H., Daumé III, H., Eisner, J.: Learning to search in branch-and-bound algorithms. In: Proceedings of the 27th International Conference on Neural Information Processing Systems Volume 2, NIPS’14, pp. 3293–3301. MIT Press, Cambridge, MA, USA (2014)Google Scholar
  144. 144.
    He, Q., Ahmed, S., Nemhauser, G.L.: A probabilistic comparison of split and type 1 triangle cuts for two-row mixed-integer programs. SIAM J. Optim. 21(3), 617–632 (2011)MathSciNetzbMATHGoogle Scholar
  145. 145.
    Hoffman, K.L., Padberg, M.: Improving LP-representation of zero-one linear programs for branch-and-cut. ORSA J. Comput. 3, 121–134 (1991)zbMATHGoogle Scholar
  146. 146.
    Hutter, F., Hoos, H. H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 7th International Conference, CPAIOR 2010, Bologna, Italy, June 14–18, 2010. Proceedings, pp. 186–202 (2010)Google Scholar
  147. 147.
    Jeroslow, R.: Cutting-plane theory: algebraic methods. Discrete Math. 23(2), 121–150 (1978)MathSciNetzbMATHGoogle Scholar
  148. 148.
    Jeroslow, R.G.: Minimal inequalities. Math. Program. 17(1), 1–15 (1979)MathSciNetzbMATHGoogle Scholar
  149. 149.
    Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. Study 2, 137–179 (1974)MathSciNetGoogle Scholar
  150. 150.
    Johnson, E.L.: On the group problem and a subadditive approach to integer programming. Ann. Discrete Math. 5, 97–112 (1979)MathSciNetzbMATHGoogle Scholar
  151. 151.
    Johnson, E.L.: Characterization of facets for multiple right-hand side choice linear programs. Math. Program. Study 14, 112–142 (1981)zbMATHGoogle Scholar
  152. 152.
    Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)MathSciNetzbMATHGoogle Scholar
  153. 153.
    Johnson, E.L., Padberg, M.W.: Degree-two inequalities, clique facets and biperfect graphs. Ann. Discrete Math. 16, 169–187 (1982)MathSciNetzbMATHGoogle Scholar
  154. 154.
    Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G.L., Dilkina, B.: Learning to branch in mixed integer programming. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 724–731. AAAI Press (2016)Google Scholar
  155. 155.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.D., Ralphs, T.K., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)MathSciNetGoogle Scholar
  156. 156.
    Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015)MathSciNetGoogle Scholar
  157. 157.
    Köppe, M., Zhou, Y.: New computer-based search strategies for extreme functions of the Gomory-Johnson infinite group problem. Math. Program. Comput. 9(3), 419–469 (2017)MathSciNetzbMATHGoogle Scholar
  158. 158.
    Köppe, M., Zhou, Y.: On the notions of facets, weak facets, and extreme functions of the Gomory–Johnson infinite group problem. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 330–342. Springer (2017)Google Scholar
  159. 159.
    Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposition. In: Salvagnin, D., Lombardi, M. (eds.) Integration of AI and OR Techniques in Constraint Programming, pp. 202–210. Springer International Publishing, Cham (2017)Google Scholar
  160. 160.
    Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. Math. Oper. Res. 42, 135–143 (2017)MathSciNetzbMATHGoogle Scholar
  161. 161.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)MathSciNetzbMATHGoogle Scholar
  162. 162.
    Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)MathSciNetzbMATHGoogle Scholar
  163. 163.
    Lebair, T.M., Basu, A.: Approximation of minimal functions by extreme functions. ArXiv preprint arXiv:1708.04344 (2017)
  164. 164.
    Letchford, A.N., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory fractional cuts. Oper. Res. Lett. 30(2), 74–82 (2002)MathSciNetzbMATHGoogle Scholar
  165. 165.
    Li, Y., Richard, J.-P.P.: Cook, Kannan and Schrijver’s example revisited. Discrete Optim. 5, 724–734 (2008)MathSciNetzbMATHGoogle Scholar
  166. 166.
    Lodi, A., Pesant, G., Rousseau, L.-M.: On counting lattice points and Chvátal-Gomory cutting planes. In: Achterberg, T., Beck, J.C. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 131–136. Springer, Berlin (2011)Google Scholar
  167. 167.
    Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017)MathSciNetzbMATHGoogle Scholar
  168. 168.
    Louveaux, Q., Poirrier, L.: An algorithm for the separation of two-row cuts. Math. Program. 143(1–2), 111–146 (2014)MathSciNetzbMATHGoogle Scholar
  169. 169.
    Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp. 177–210. Kluwer, Dordrecht (1989)Google Scholar
  170. 170.
    Lovász, L., Schirjver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)MathSciNetzbMATHGoogle Scholar
  171. 171.
    Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer and mixed integer programming. Discrete Appl. Math. 123, 397–446 (2002)MathSciNetzbMATHGoogle Scholar
  172. 172.
    Marchand, H., Wolsey, L.A.: The 0–1 knapsack problem with a single continuous variable. Math. Program. 85, 15–33 (1999)MathSciNetzbMATHGoogle Scholar
  173. 173.
    Margot, F.: Testing cut generators for mixed-integer linear programming. Math. Program. Comput. 1(1), 69–95 (2009)MathSciNetzbMATHGoogle Scholar
  174. 174.
    Mastrolilli, M.: High degree sum of squares proofs, Bienstock–Zuckerberg hierarchy and CG cuts. In: Eisenbrand, F., Könemann, J. (eds) Integer Programming and Combinatorial Optimization—19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26–28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science, pp. 405–416. Springer (2017)Google Scholar
  175. 175.
    Miller, L.A., Li, Y., Richard, J.-P.P.: New inequalities for finite and infinite group problems from approximate lifting. Naval Res. Logist. 55(2), 172–191 (2008)MathSciNetzbMATHGoogle Scholar
  176. 176.
    Molinaro, M.: Understanding the Strength of General-Purpose Cutting Planes. Ph.D. thesis, Carnegie Mellon University (2013)Google Scholar
  177. 177.
    Morán, D.A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)MathSciNetzbMATHGoogle Scholar
  178. 178.
    Nannicini, G., Belotti, P., Lee, J., Linderoth, J., Margot, F., Wächter, A.: A probing algorithm for MINLP with failure prediction by SVM. In: Achterberg, T., Beck, J.C. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 154–169. Springer, Berlin (2011)Google Scholar
  179. 179.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)zbMATHGoogle Scholar
  180. 180.
    Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)MathSciNetzbMATHGoogle Scholar
  181. 181.
    Neto, J.: A simple finite cutting plane algorithm for integer programs. Oper. Res. Lett. 40(6), 578–580 (2012)MathSciNetzbMATHGoogle Scholar
  182. 182.
    Owen, J.H., Mehrotra, S.: A disjunctive cutting plane procedure for general mixed-integer linear programs. Math. Program. 89(3), 437–448 (2001)MathSciNetzbMATHGoogle Scholar
  183. 183.
    Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper. Res. 33, 842–861 (1985)MathSciNetzbMATHGoogle Scholar
  184. 184.
    Saunders, M.A., Wright, M.H., Gill, P.E., Murray, W.: Sparse matrix methods in optimization. SIAM J. Sci. Stat. Comput. 5, 562–589 (1984)MathSciNetzbMATHGoogle Scholar
  185. 185.
    Pia, A.D., Wagner, C., Weismantel, R.: A probabilistic comparison of the strength of split, triangle, and quadrilateral cuts. Oper. Res. Lett. 39(4), 234–240 (2011)MathSciNetzbMATHGoogle Scholar
  186. 186.
    Pokutta, S., Schulz, A.S.: On the rank of cutting-plane proof systems. In: IPCO, pp. 450–463. Springer (2010)Google Scholar
  187. 187.
    Pokutta, S., Stauffer, G.: Lower bounds for the Chvátal-Gomory rank in the 0/1 cube. Oper. Res. Lett. 39(3), 200–203 (2011)MathSciNetzbMATHGoogle Scholar
  188. 188.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)MathSciNetzbMATHGoogle Scholar
  189. 189.
    Richard, J.-P.P., Dey, S.S.: The Group-theoretic Approach in Mixed Integer Programming, Chapter 19. Springer, Berlin (2010)Google Scholar
  190. 190.
    Richard, J.-P.P., Li, Y., Miller, L.A.: Valid inequalities for MIPs and group polyhedra from approximate liftings. Math. Program. 118, 253–277 (2009)MathSciNetzbMATHGoogle Scholar
  191. 191.
    Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP. Tutorial. https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf (2013). Accessed 1 Feb 2018
  192. 192.
    Rothvoß, T., Sanità, L.: 0/1 polytopes with quadratic Chvátal rank. Oper. Res. 65(1), 212–220 (2017)MathSciNetzbMATHGoogle Scholar
  193. 193.
    Sanjeevi, S., Kianfar, K.: Mixed n-step MIR inequalities: facets for the n-mixing set. Discrete Optim. 9(4), 216–235 (2012)MathSciNetzbMATHGoogle Scholar
  194. 194.
    Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980). Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part IIGoogle Scholar
  195. 195.
    Sen, S., Higle, J.: The C3 theorem and a D2 algorithm for large scale stochastic mixed-integer programming: set convexification. Math. Program. 104(1), 1–20 (2005)MathSciNetzbMATHGoogle Scholar
  196. 196.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Optim. 3, 411–430 (1990)MathSciNetzbMATHGoogle Scholar
  197. 197.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discr. Appl. Math. 52, 83–106 (1994)MathSciNetzbMATHGoogle Scholar
  198. 198.
    Sherali, H.D., Smith, J.C., Adams, W.P.: Reduced first-level representations via the reformulation-linearization technique: results, counterexamples, and computations. Discr. Appl. Math. 101, 247–267 (2000)MathSciNetzbMATHGoogle Scholar
  199. 199.
    Singh, M., Talwar, K.: Improving integrality gaps via Chvátal–Gomory rounding. In: APPROX-RANDOM, pp. 366–379. Springer (2010)Google Scholar
  200. 200.
    Van Roy, T.J., Wolsey, L.A.: Valid inequalities for mixed 0–1 programs. Discrete Appl. Math. 14(2), 199–213 (1986)MathSciNetzbMATHGoogle Scholar
  201. 201.
    Walter, M.: Sparsity of lift-and-project cutting planes. In: Operations Research Proceedings 2012, pp. 9–14. Springer (2014)Google Scholar
  202. 202.
    Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68 (1997)MathSciNetzbMATHGoogle Scholar
  203. 203.
    Wesselmann, F., Suhl, U.H.: Implementing cutting plane management and selection techniques. Technical report, University of Paderborn, December (2012)Google Scholar
  204. 204.
    Wolsey, L.A.: Faces for a linear inequality in 0–1 variables. Math. Program. 8, 165–178 (1975)MathSciNetzbMATHGoogle Scholar
  205. 205.
    Wolsey, L.A.: Submodularity and valid inequalities in capacitated fixed charge networks. Oper. Res. Lett. 8(3), 119–124 (1989)MathSciNetzbMATHGoogle Scholar
  206. 206.
    Wolsey, L.A.: Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar
  207. 207.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algorithm configuration and selection for mixed-integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI) (2011)Google Scholar
  208. 208.
    Yildiz, S., Cornuéjols, G.: Cut-generating functions for integer variables. Math. Oper. Res. 41(4), 1381–1403 (2016)MathSciNetzbMATHGoogle Scholar
  209. 209.
    Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: Can a pure cutting plane algorithm work? Math. Program. 130(1), 153–176 (2011)MathSciNetzbMATHGoogle Scholar
  210. 210.
    Zemel, E.: Lifting the facets of zero-one polytopes. Math. Program. 15, 268–277 (1978)MathSciNetzbMATHGoogle Scholar
  211. 211.
    Zhang, M., Küçükyavuz, S.: Finitely convergent decomposition algorithms for two-stage stochastic pure integer programs. SIAM J. Optim. 24(4), 1933–1951Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Computer Science DepartmentPUC-RioRio de JaneiroBrazil

Personalised recommendations