Scenario reduction for stochastic programs with Conditional Value-at-Risk

  • Sebastián Arpón
  • Tito Homem-de-Mello
  • Bernardo Pagnoncelli
Full Length Paper Series B
  • 16 Downloads

Abstract

In this paper we discuss scenario reduction methods for risk-averse stochastic optimization problems. Scenario reduction techniques have received some attention in the literature and are used by practitioners, as such methods allow for an approximation of the random variables in the problem with a moderate number of scenarios, which in turn make the optimization problem easier to solve. The majority of works for scenario reduction are designed for classical risk-neutral stochastic optimization problems; however, it is intuitive that in the risk-averse case one is more concerned with scenarios that correspond to high cost. By building upon the notion of effective scenarios recently introduced in the literature, we formalize that intuitive idea and propose a scenario reduction technique for stochastic optimization problems where the objective function is a Conditional Value-at-Risk. Numerical results presented with problems from the literature illustrate the performance of the method and indicate the cases where we expect it to perform well.

Mathematics Subject Classification

90C15 (Stochastic Programming) 90C31 (Sensitivity, stability, parametric optimization) 90C59 (Approximation methods and heuristics) 

Notes

Acknowledgements

We thank the anonymous referees for their constructive comments which helped improve the presentation of our results. This work has been supported by FONDECYT 1171145, Chile.

References

  1. 1.
    Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106(3), 433–446 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Altenstedt, F.: Aspects on Asset Liability Management Via Stochastic Programming. Chalmers University of Technology, Gothenburg (2003)Google Scholar
  3. 3.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–227 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Cotton, T.G., Ntaimo, L.: Computational study of decomposition algorithms for mean-risk stochastic linear programs. Math. Program. Comput. 7(4), 471–499 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Czyzyk, J., Mesnier, M.P., Moré, J.J.: The neos server. IEEE J. Comput. Sci. Eng. 5(3), 68–75 (1998)CrossRefGoogle Scholar
  7. 7.
    Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)CrossRefMATHGoogle Scholar
  8. 8.
    Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dolan, E.D.: The neos server 4.0 administrative guide (Technical Memorandum NO. ANL/MCS-TM-250). Mathematics and Computer Science Division, Argonne National Laboratory (2001)Google Scholar
  10. 10.
    Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. Math. Program. 95(3), 493–511 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Math. Program. 95, 493–511 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eichhorn, A., Römisch, W.: Stability of multistage stochastic programs incorporating polyhedral risk measures. Optimization 57(2), 295–318 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Espinoza, D., Moreno, E.: A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs. Comput. Optim. Appl. 59(3), 617–638 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fairbrother, J., Turner, A., Wallace, S.: Scenario generation for stochastic programs with tail risk measures (2015). arXiv preprint arXiv:1511.03074
  16. 16.
    García, S., Labbé, M., Marín, A.: Solving large p-median problems with a radius formulation. INFORMS J. Comput. 23(4), 546–556 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    García-Bertrand, R., Mínguez, R.: Iterative scenario based reduction technique for stochastic optimization using conditional value-at-risk. Optim. Eng. 15(2), 355–380 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gropp, W., Moré, J.J.: Optimization environments and the neos server. In: Buhman, Martin D., Iserles, Arieh (eds.) Approximation Theory and Optimization, pp. 167–182. Cambridge University Press, Cambridge (1997)Google Scholar
  19. 19.
    Guigues, V., Krätschmer, V., Shapiro, A.: Statistical inference and hypotheses testing of risk averse stochastic programs (2016). arXiv preprint arXiv:1603.07384
  20. 20.
    Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. 118, 371–406 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Homem-de-Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19, 56–85 (2014)MathSciNetGoogle Scholar
  23. 23.
    Hoyland, K., Kaut, M., Wallace, S.W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24, 169–185 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hoyland, K., Wallace, S.W.: Generating scenario trees for multistage decision problems. Manag. Sci. 47(2), 295–307 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142(1), 215–241 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Louveaux, F., Smeers, Y.: Optimal investments for electricity generation: a stochastic model and a test problem. In: Ermoliev, Y., Wets, R.J.-B. (eds.) Numericaltechniques for Stochastic Optimization Problems, pp. 445–452. Springer, Berlin (1988)Google Scholar
  27. 27.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetMATHGoogle Scholar
  28. 28.
    Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24(4), 1670–1697 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Miller, N., Ruszczynski, A.: Risk-averse two-stage stochastic linear programming: modeling and decomposition. Oper. Res. 59, 125–132 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Noyan, N.: Risk-averse two-stage stochastic programming with an application to disaster management. Comput. Oper. Res. 39(3), 541–559 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Pflug, G.C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Ser. B 89(2), 251–271 (2001)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pflug, G.C., Pichler, A.: Approximations for probability distributions and stochastic optimization problems. In: Bertocchi, M., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy, pp. 343–387. Springer, New York (2011)CrossRefGoogle Scholar
  33. 33.
    Pineda, S., Conejo, A.: Scenario reduction for risk-averse electricity trading. IET Gener. Transm. Distrib. 4(6), 694–705 (2010)CrossRefGoogle Scholar
  34. 34.
    Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models, vol. 269. Wiley, Hoboken (1991)MATHGoogle Scholar
  35. 35.
    Rahimian, H., Bayraksan, G., Homem-de Mello, T.: Identifying effective scenarios in distributionally robust stochastic programs with total variation distance. Math. Program. (2018).  https://doi.org/10.1007/s10107-017-1224-6
  36. 36.
    Rockafellar, R.T., Uryasev, S.P.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)CrossRefGoogle Scholar
  37. 37.
    Rockafellar, R.T., Wets, R.J.: Variational Analysis: Grundlehren der mathematischen wissenschaften. Springer, Berlin (1998)CrossRefGoogle Scholar
  38. 38.
    Römisch, W., Wets, R.-B.: Stability of \(\varepsilon \)-approximate solutions to convex stochastic programs. SIAM J. Optim. 18(3), 961–979 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Meth. Oper. Res. 58, 57–68 (2003)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. SIAM, Philadelphia (2014)MATHGoogle Scholar
  41. 41.
    Wallace, S.W., Ziemba, W.T.: Applications of Stochastic Programming, vol. 5. SIAM, Philadelphia (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.School of BusinessUniversidad Adolfo IbañezSantiagoChile

Personalised recommendations