Mathematical Programming

, Volume 170, Issue 1, pp 207–236 | Cite as

Binary extended formulations of polyhedral mixed-integer sets

  • Sanjeeb Dash
  • Oktay Günlük
  • Robert Hildebrand
Full Length Paper Series B


We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represented by a distinct collection of binary variables, what we call “unimodular” extended formulations are the strongest. We also compare the strength of some binary extended formulations from the literature. Finally, we study the behavior of branch-and-bound on such extended formulations and show that branching on the new binary variables leads to significantly smaller enumeration trees in some cases.


Mixed-integer programming Binarization Extended formulations Cutting planes Branch-and-bound 

Mathematics Subject Classification

90C11 90C57 



We would like to thank Andrea Lodi for pointing out the importance of binarization techniques and for fruitful discussions.


  1. 1.
    Angulo, A., Van Vyve, M.: Fixed-charge transportation problems on trees. OR Lett. 45, 275–281 (2017)MathSciNetGoogle Scholar
  2. 2.
    Atamtürk, A.: On the facets of the mixed-integer knapsack polyhedron. Math. Program. B 98, 145–175 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–323 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodur, M., Dash, S., Günlük, O.: Cutting planes derived from extended LP formulations. Math. Program. 161, 159–192 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for stochastic integer programs with continuous recourse. INFORMS J. Comput. 29, 77–99 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonami, P., Margot, F.: Cut generation through binarization. Math. Program. B 154, 197–223 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47, 155–174 (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    IBM ILOG-CPLEX. Cplex 12.7 User’s Manual (2017)Google Scholar
  11. 11.
    Dash, S., Günlük, O., Lodi, A.: MIR closures of polyhedral sets. Mathem. Program. 121(1), 33–60 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dey, S.S., Louveaux, Q.: Split rank of triangle and quadrilateral inequalities. Mathem. Oper. Res. 26, 432–461 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. 135, 397–412 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gomory, R.E.: An Algorithm for Integer Solutions to Linear Programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)Google Scholar
  15. 15.
    Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gupte, A., Ahmed, S., Cheon, M., Dey, S.: Solving mixed integer bilinear problems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hildebrand, R., Weismantel, R., Zenklusen, R.: Extension complexity lower bounds for mixed-integer extended formulations. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2342–2350 (2017)Google Scholar
  18. 18.
    Laurent, M., Sassano, A.: A characterizatoin of knapsacks with the max-flow min-cut property. Oper. Res. Lett. 11, 105–110 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Owen, J.H., Mehrotra, S.: A disjunctive cutting plane procedure for general mixed-integer linear programs. Math. Program. 89(3), 437–448 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Owen, J.H., Mehrotra, S.: On the value of binary expansions for general mixed-integer linear programs. Oper. Res. 50, 810–819 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Roy, J.S.: “Binarize and Project” to generate cuts for general mixed-integer programs. Algorithmic Oper. Res. 2, 37–51 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar
  24. 24.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Norwell (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.Grado Department of Industrial and Systems EngineeringVirginia TechBlacksburgUSA

Personalised recommendations