Skip to main content
Log in

Least cost influence propagation in (social) networks

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept of activation functions is proposed together with strengthening inequalities. Exact and heuristic solution methods are developed and compared for the new problem. Our computational results also show that our approaches outperform the state-of-the-art on relevant, special cases of the GLCIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44), 4017–4022 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Org. Theory 12(1), 21–34 (2006)

    Article  MATH  Google Scholar 

  4. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and influence propagation in social networks. Synth. Lect. Data Manag. 5(4), 1–177 (2013)

    Article  Google Scholar 

  6. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)

  7. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  10. Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Math. Program. 33(1), 28–42 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gunnec, D., Raghavan, S.: Integrating social network effects in the share-of-choice problem. Decis. Sci. 48(6), 1098–1131 (2017)

    Article  Google Scholar 

  12. Günneç, D.: Integrating social network effects in product design. Ph.D. thesis, University of Maryland (2012)

  13. Günneç, D., Raghavan, S., Zhang, R.: Tailored incentives and least cost influence maximization on social networks. Technical report, University of Maryland (2017)

  14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

  15. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Proceedings of the 32nd International Conference on Automata, Languages and Programming, pp. 1127–1138. Springer (2005)

  16. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. AAAI 7, 1371–1376 (2007)

    Google Scholar 

  18. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1), 1–39 (2007)

    Article  Google Scholar 

  19. Raghavan, S., Zhang, R.: Weighted target set selection on social networks. Technical report, University of Maryland (2016)

  20. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70. ACM (2002)

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’-networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  22. Wu, H.-H., Küçükyavuz, S.: A two-stage stochastic programming approach for influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fischetti.

Additional information

Supported by WWTF (Project ICT15-014) and MiUR, Italy (Project PRIN 2015).

A Detailed results

A Detailed results

See Tables 3, 4 and 5.

Table 3 Results on SW instances for \(\varGamma = 0.9\)
Table 4 Results on SW instances for \(\varGamma = 1\)
Table 5 Results on SW instances for \(\varGamma = 1.1\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischetti, M., Kahr, M., Leitner, M. et al. Least cost influence propagation in (social) networks. Math. Program. 170, 293–325 (2018). https://doi.org/10.1007/s10107-018-1288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1288-y

Keywords

Mathematics Subject Classification

Navigation