Bellavia, S., Gondzio, J., Morini, B.: A matrix-free preconditioner for sparse symmetric positive definite systems and least-squares problems. SIAM J. Sci. Comput. 35, A192–A211 (2013)
MathSciNet
Article
Google Scholar
Benson, S.J., Ye, Y.: Algorithm 875: DSDP5-software for semidefinite programming. ACM Trans. Math. Softw. 34(3). Art. 16, 20 (2008)
MathSciNet
Article
Google Scholar
Benson, S.J., Ye, Y., Zhang, X.: Mixed linear and semidefinite programming for combinatorial and quadratic optimization. Optim. Methods Softw. 11(1–4), 515–544 (1999)
MathSciNet
Article
Google Scholar
Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000)
MathSciNet
Article
Google Scholar
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)
MathSciNet
Article
Google Scholar
Choi, C., Ye, Y.: Solving large-scale sparse semidefinite programs using the dual scaling algorithm with an iterative solver. Tech. rep. (2000)
Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)
MathSciNet
MATH
Google Scholar
De Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, vol. 65. Springer, Berlin (2006)
MATH
Google Scholar
Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)
MathSciNet
Article
Google Scholar
Fountoulakis, K., Gondzio, J.: A second-order method for strongly convex l1-regularization problems. Math. Program. A 156(1), 189–219 (2016)
Article
Google Scholar
Golub, G.H., Van Loan, C.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)
MATH
Google Scholar
Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51, 457–480 (2012)
MathSciNet
Article
Google Scholar
Gould, N., Scott, J.A.: The state-of-the-art of preconditioners for sparse linear least-squares problems. Tech. Rep. RAL-P-2015-010, Rutherford Appleton Laboratory, Chilton, England (2015)
Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10, 673–696 (2000)
MathSciNet
Article
Google Scholar
Kocvara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified barrier method using iterative solvers. Math. Program. 109, 413–444 (2007)
MathSciNet
Article
Google Scholar
Liesen, J., Strakos, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press, Oxford (2012)
Book
Google Scholar
Lin, C.J., Morè, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24–25 (1999)
MathSciNet
Article
Google Scholar
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
MathSciNet
Article
Google Scholar
Scott, J.A., Tuma, M.: HSL_MI28: An efficient and robust limited-memory incomplete Cholesky factorization code. ACM Trans. Math. Softw. 40. Art. 24, 19 (2014)
Scott, J.A., Tuma, M.: On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM J. Sci. Comput. 36, A609–A633 (2014)
MathSciNet
Article
Google Scholar
Todd, M.J.: Semidefinite optimization. Acta Numer. 2001(10), 515–560 (2001)
MathSciNet
Article
Google Scholar
Toh, K.C.: Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim. 14, 670–698 (2004)
MathSciNet
Article
Google Scholar
Toh, K.C., Kojima, M.: Solving some large scale semidefinite programs via the conjugate residual method. SIAM J. Optim. 12(3), 669–691 (2002)
MathSciNet
Article
Google Scholar
Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95(2), 189–217 (2003)
MathSciNet
Article
Google Scholar
Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends Optim. 1(4), 241–433 (2015)
Article
Google Scholar
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
MathSciNet
Article
Google Scholar
Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)
MathSciNet
Article
Google Scholar