Skip to main content

An inexact dual logarithmic barrier method for solving sparse semidefinite programs


A dual logarithmic barrier method for solving large, sparse semidefinite programs is proposed in this paper. The method avoids any explicit use of the primal variable X and therefore is well-suited to problems with a sparse dual matrix S. It relies on inexact Newton steps in dual space which are computed by the conjugate gradient method applied to the Schur complement of the reduced KKT system. The method may take advantage of low-rank representations of matrices \(A_i\) to perform implicit matrix-vector products with the Schur complement matrix and to compute only specific parts of this matrix. This allows the construction of the partial Cholesky factorization of the Schur complement matrix which serves as a good preconditioner for it and permits the method to be run in a matrix-free scheme. Convergence properties of the method are studied and a polynomial complexity result is extended to the case when inexact Newton steps are employed. A Matlab-based implementation is developed and preliminary computational results of applying the method to maximum cut and matrix completion problems are reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bellavia, S., Gondzio, J., Morini, B.: A matrix-free preconditioner for sparse symmetric positive definite systems and least-squares problems. SIAM J. Sci. Comput. 35, A192–A211 (2013)

    MathSciNet  Article  Google Scholar 

  2. Benson, S.J., Ye, Y.: Algorithm 875: DSDP5-software for semidefinite programming. ACM Trans. Math. Softw. 34(3). Art. 16, 20 (2008)

    MathSciNet  Article  Google Scholar 

  3. Benson, S.J., Ye, Y., Zhang, X.: Mixed linear and semidefinite programming for combinatorial and quadratic optimization. Optim. Methods Softw. 11(1–4), 515–544 (1999)

    MathSciNet  Article  Google Scholar 

  4. Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000)

    MathSciNet  Article  Google Scholar 

  5. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    MathSciNet  Article  Google Scholar 

  6. Choi, C., Ye, Y.: Solving large-scale sparse semidefinite programs using the dual scaling algorithm with an iterative solver. Tech. rep. (2000)

  7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  8. De Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, vol. 65. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)

    MathSciNet  Article  Google Scholar 

  10. Fountoulakis, K., Gondzio, J.: A second-order method for strongly convex l1-regularization problems. Math. Program. A 156(1), 189–219 (2016)

    Article  Google Scholar 

  11. Golub, G.H., Van Loan, C.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  12. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51, 457–480 (2012)

    MathSciNet  Article  Google Scholar 

  13. Gould, N., Scott, J.A.: The state-of-the-art of preconditioners for sparse linear least-squares problems. Tech. Rep. RAL-P-2015-010, Rutherford Appleton Laboratory, Chilton, England (2015)

  14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10, 673–696 (2000)

    MathSciNet  Article  Google Scholar 

  15. Kocvara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified barrier method using iterative solvers. Math. Program. 109, 413–444 (2007)

    MathSciNet  Article  Google Scholar 

  16. Liesen, J., Strakos, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  17. Lin, C.J., Morè, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24–25 (1999)

    MathSciNet  Article  Google Scholar 

  18. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    MathSciNet  Article  Google Scholar 

  19. Scott, J.A., Tuma, M.: HSL_MI28: An efficient and robust limited-memory incomplete Cholesky factorization code. ACM Trans. Math. Softw. 40. Art. 24, 19 (2014)

  20. Scott, J.A., Tuma, M.: On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM J. Sci. Comput. 36, A609–A633 (2014)

    MathSciNet  Article  Google Scholar 

  21. Todd, M.J.: Semidefinite optimization. Acta Numer. 2001(10), 515–560 (2001)

    MathSciNet  Article  Google Scholar 

  22. Toh, K.C.: Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim. 14, 670–698 (2004)

    MathSciNet  Article  Google Scholar 

  23. Toh, K.C., Kojima, M.: Solving some large scale semidefinite programs via the conjugate residual method. SIAM J. Optim. 12(3), 669–691 (2002)

    MathSciNet  Article  Google Scholar 

  24. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95(2), 189–217 (2003)

    MathSciNet  Article  Google Scholar 

  25. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends Optim. 1(4), 241–433 (2015)

    Article  Google Scholar 

  26. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    MathSciNet  Article  Google Scholar 

  27. Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the anonymous referees for their suggestions, which lead to significant improvement of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Margherita Porcelli.

Additional information

The work of the first and the third author was supported by Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM) of Italy. The work of the second author was supported by EPSRC Research Grant EP/N019652/1. Part of the research was conducted during a visit of the second author at Dipartimento di Ingegneria Industriale, UNIFI, the visit was supported by the University of Florence Internationalisation Plan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellavia, S., Gondzio, J. & Porcelli, M. An inexact dual logarithmic barrier method for solving sparse semidefinite programs. Math. Program. 178, 109–143 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Semidefinite programming
  • Dual logarithmic barrier method
  • Inexact Newton method
  • Preconditioning

Mathematics Subject Classification

  • 90C22
  • 90C51
  • 65F10
  • 65F50