Valid inequalities for separable concave constraints with indicator variables

Full Length Paper Series B


We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.

Mathematics Subject Classification

90C11 90C26 



The work was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-06CH11357.


  1. 1.
    Atamtürk, A., Muñoz, J.C.: A study of the lot-sizing polytope. Math. Program. 99(3), 443–465 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balas, E.: Disjunctive programming. In: Annals of Discrete Mathematics 5: Discrete Optimization, pp. 3–51. North Holland (1979)Google Scholar
  3. 3.
    Barany, I., Van Roy, T., Wolsey, L.: Uncapacitated lot-sizing: the convex hull of solutions. Math. Program. Study 22, 32–43 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1131 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 427–444. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Mixed integer nonlinear programming, pp. 1–39. Springer, Berlin (2012)Google Scholar
  7. 7.
    Borghetti, A., D’Ambrosio, C., Lodi, A., Martello, S.: An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir. IEEE Trans. Power Syst. 23(3), 1115–1124 (2008)CrossRefGoogle Scholar
  8. 8.
    D’Ambrosio, C., Lodi, A., Wiese, S., Bragalli, C.: Mathematical programming techniques in water network optimization. Eur. J. Oper. Res. 243(3), 774788 (2015)MathSciNetMATHGoogle Scholar
  9. 9.
    D’Ambrosio, C., Lee, J., Wächter, A.: An algorithmic framework for MINLP with separable non-convexity. In: Lee, J., Leyffer, S. (eds.) Nonlinear Optimization: Algorithmic Advances and Applications, IMA Volumes in Mathematics and its Applications, vol. 154, pp. 315–347 (2012)Google Scholar
  10. 10.
    Erickson, R.E., Monma, C.L., Veinott Jr., A.F.: Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow covers for mixed 0–1 integer programs. Math. Program. 85, 439–467 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Sequence independent lifting in mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25, 75–100 (1990)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guisewite, G.M., Pardalos, P.M.: A polynomial time solvable concave network flow problem. Networks 23(2), 143–147 (1993)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    He, Q., Ahmed, S., Nemhauser, G.L.: Minimum concave cost flow over a grid network. Math. Program. 150(1), 79–98 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Horst, R., Tuy, H.: Global Optimization. Springer, New York (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Humpola, J., Fügenschuh, A.: A new class of valid inequalities for nonlinear network design problems. Technical Report 13-06, ZIB, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2013)Google Scholar
  18. 18.
    Lim, C.H., Linderoth, J., Luedtke, J.: Valid inequalities for separable concave constraints with indicator variables. In: IPCO 2016: The Sixteenth Conference on Integer Programming and Combinatorial Optimization, vol. 9682, pp. 275–286. Springer, Berlin (2016)Google Scholar
  19. 19.
    Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105(2), 563–582 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Misener, R., Floudas, C.A.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nemhauser, G., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)CrossRefMATHGoogle Scholar
  22. 22.
    Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper. Res. 33(4), 842–861 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.: Fixed-charge transportation with product blending. Trans. Sci. 46(2), 281–295 (2012)CrossRefGoogle Scholar
  24. 24.
    Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Üster, H., Dilaveroğlu, S.: Optimization for design and operation of natural gas transmission networks. Appl. Energy 133, 56–69 (2014)CrossRefGoogle Scholar
  26. 26.
    Van Roy, T.J., Wolsey, L.A.: Valid inequalities for mixed 0–1 programs. Discrete Appl. Math. 14(2), 199–213 (1986)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zangwill, W.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429–450 (1968)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and Mathematical Optimization Society 2017

Authors and Affiliations

  1. 1.Wisconsin Institute for DiscoveryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Industrial and Systems Engineering, Wisconsin Institute for DiscoveryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations