Skip to main content
Log in

Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set. SIAM J. Optim. 24, 2076–2095 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alotaibi, A., Combettes, P.L., Shahzad, N.: Best approximation from the Kuhn-Tucker set of composite monotone inclusions. Numer. Funct. Anal. Optim. 36, 1513–1532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Briceño-Arias, L. M., Combettes, P. L.: A strongly convergent primal-dual method for nonoverlapping domain decomposition. Numer. Math. 133, 433–470 (2016)

  5. Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on “General projective splitting methods for sums of maximal monotone operators”. SIAM J. Control Optim. 48, 2513–2515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  9. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. A150, 251–279 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Boţ, R.I., Csetnek, E.R., Nagy, E.: Solving systems of monotone inclusions via primal-dual splitting techniques. Taiwan. J. Math. 17, 1983–2009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Briceño-Arias, L.M.: Forward-partial inverse-forward splitting for solving monotone inclusions. J. Optim. Theory Appl. 166, 391–413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Briceño-Arias, L.M., Combettes, P.L.: A monotone+skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes, P.L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. Math. Optim. 35, 311–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P.L.: Fejér-monotonicity in convex optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 2, pp. 106–114. Springer-Verlag, New York (2001). (Also available in 2nd ed., pp. 1016–1024, 2009)

    Google Scholar 

  15. Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and applications. SIAM J. Optim. 23, 2420–2447 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Combettes, P.L., Pesquet, J.-C.: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25, 1221–1248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25, 1912–1943 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, Y.: An LS-free splitting method for composite mappings. Appl. Math. Lett. 18, 843–848 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. A111, 173–199 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 787–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haugazeau, Y.: Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes. Thèse, Université de Paris, Paris, France (1968)

  22. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Ottavy, N.: Strong convergence of projection-like methods in Hilbert spaces. J. Optim. Theory Appl. 56, 433–461 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pennanen, T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pesquet, J.-C., Repetti, A.: A class of randomized primal-dual algorithms for distributed optimization. J. Nonlinear Convex Anal. 16, 2453–2490 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Combettes.

Additional information

The work of P. L. Combettes was supported by the CNRS MASTODONS project under grant 2013MesureHD and by the CNRS Imag’in project under grant 2015OPTIMISME. This work was also supported in part by U.S. National Science Foundation (NSF) grant CCF-1115638, Computing and Communication Foundations Program, CISE Directorate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combettes, P.L., Eckstein, J. Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168, 645–672 (2018). https://doi.org/10.1007/s10107-016-1044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1044-0

Keywords

Mathematics Subject Classification

Navigation