Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

Full Length Paper Series B

Abstract

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods.

Keywords

Asynchronous algorithm Block-iterative algorithm Duality Monotone inclusion Monotone operator Primal-dual algorithm Splitting algorithm 

Mathematics Subject Classification

47H05 49M27 65K05 90C25 

References

  1. 1.
    Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set. SIAM J. Optim. 24, 2076–2095 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alotaibi, A., Combettes, P.L., Shahzad, N.: Best approximation from the Kuhn-Tucker set of composite monotone inclusions. Numer. Funct. Anal. Optim. 36, 1513–1532 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Attouch, H., Briceño-Arias, L. M., Combettes, P. L.: A strongly convergent primal-dual method for nonoverlapping domain decomposition. Numer. Math. 133, 433–470 (2016)Google Scholar
  5. 5.
    Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on “General projective splitting methods for sums of maximal monotone operators”. SIAM J. Control Optim. 48, 2513–2515 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefMATHGoogle Scholar
  9. 9.
    Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. A150, 251–279 (2015)MathSciNetMATHGoogle Scholar
  10. 10.
    Boţ, R.I., Csetnek, E.R., Nagy, E.: Solving systems of monotone inclusions via primal-dual splitting techniques. Taiwan. J. Math. 17, 1983–2009 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Briceño-Arias, L.M.: Forward-partial inverse-forward splitting for solving monotone inclusions. J. Optim. Theory Appl. 166, 391–413 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Briceño-Arias, L.M., Combettes, P.L.: A monotone+skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Combettes, P.L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. Math. Optim. 35, 311–330 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Combettes, P.L.: Fejér-monotonicity in convex optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 2, pp. 106–114. Springer-Verlag, New York (2001). (Also available in 2nd ed., pp. 1016–1024, 2009)Google Scholar
  15. 15.
    Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and applications. SIAM J. Optim. 23, 2420–2447 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Combettes, P.L., Pesquet, J.-C.: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25, 1221–1248 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25, 1912–1943 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dong, Y.: An LS-free splitting method for composite mappings. Appl. Math. Lett. 18, 843–848 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. A111, 173–199 (2008)MathSciNetMATHGoogle Scholar
  20. 20.
    Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 787–811 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Haugazeau, Y.: Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes. Thèse, Université de Paris, Paris, France (1968)Google Scholar
  22. 22.
    Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A 255, 2897–2899 (1962)MathSciNetMATHGoogle Scholar
  23. 23.
    Ottavy, N.: Strong convergence of projection-like methods in Hilbert spaces. J. Optim. Theory Appl. 56, 433–461 (1988)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Pennanen, T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Pesquet, J.-C., Repetti, A.: A class of randomized primal-dual algorithms for distributed optimization. J. Nonlinear Convex Anal. 16, 2453–2490 (2015)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions – UMR CNRS 7598UPMC Université Paris 06ParisFrance
  2. 2.Department of Managemement Science and Information Systems and RUTCORRutgers UniversityPiscatawayUSA

Personalised recommendations