Abstract
We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.
This is a preview of subscription content, access via your institution.
References
Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Set-Val. Var. Anal. 21, 93–126 (2013)
Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference, ESAIM Proc. 13, 1–17 (2003)
Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)
Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Am. Math. Soc. 357, 3831–3863 (2005)
Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Val. Anal. 1, 185–212 (1993)
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Progr. 86, 135–160 (1999)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Val. Var. Anal. 21, 431–473 (2013)
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Val. Var. Anal. 21, 475–5013 (2013)
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)
Bunt, L.N.H.: Bitdrage tot de Theorie der Konvekse Puntverzamelingen. Ph.D. thesis, Univ. of Groningen, Amsterdam (1934)
Burke, J.V., Deng, S.: Weak sharp minima revisited I. Basic theory. Control Cybern. 31, 439–469 (2002)
Burke, J.V., Deng, S.: Weak sharp minima revisited II. Application to linear regularity and error bounds. Math. Progr. 104, 235–261 (2005)
Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)
Chui, C.K., Deutsch, F., Ward, J.D.: Constrained best approximation in Hilbert space. Constr. Approx. 6, 35–64 (1990)
Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Springer, New York (1998)
Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)
Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory. 90, 385–414 (1997)
Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer Monographs in Mathematics. Springer, Dordrecht (2009)
Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Alternating projections and coupling slope. Preprint, arXiv:1401.7569 (2014)
Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15, 1637–1651 (2015)
Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Val. Var. Anal. 18, 121–149 (2010)
Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall Inc, Englewood Cliffs, N.J. (1974)
Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23, 2397–2419 (2013)
Hirsch, M.: Differential Topology. Springer, New York (1976)
Ioffe, A.D.: Approximate subdifferentials and applications III. The metric theory. Mathematika 36, 1–38 (1989)
Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)
Ioffe, A.D.: Metric regularity. Theory and applications–a survey. Preprint, arXiv:1505.07920 (2015)
Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Val. Anal. 16, 199–227 (2008)
Jameson, G.J.O.: The duality of pairs of wedges. Proc. Lond. Math. Soc. 24, 531–547 (1972)
Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Progr. 84, 137–160 (1999)
Kruger, A.Y.: A covering theorem for set-valued mappings. Optimization 19, 763–780 (1988)
Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1, 101–126 (2005)
Kruger, A.Y.: About regularity of collections of sets. Set-Val. Anal. 14, 187–206 (2006)
Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13, 1737–1785 (2009)
Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64, 49–79 (2015)
Kruger, A.Y., Luke, D.R., Thao, N.H.: About subregularity of collections of sets. Preprint
Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)
Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164, 41–67 (2015)
Kruger, A.Y., Thao, N.H.: Regularity of collections of sets and convergence of inexact alternating projections. J. Convex Anal. 23 (2016)
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier. 48, 769–783 (1998)
Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9, 485–513 (2009)
Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)
Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18, 643–665 (2007)
Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux Dérivées Partielles. Éditions du Centre National de la Recherche Scientifique. 87–89 (1962)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)
Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Progr. 99, 521–538 (2004)
Ng, K.F., Zang, R.: Linear regularity and \(\varphi \)-regularity of nonconvex sets. J. Math. Anal. Appl. 328, 257–280 (2007)
Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Val. Anal. 9, 187–216 (2001)
Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. (2015). doi:10.1007/s10208-015-9253-0
Pang, C.H.J.: First order constrained optimization algorithms with feasibility updates. Preprint, arXiv:1506.08247 (2015)
Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics. Springer, New York (2013)
Phan, H.M.: Linear convergence of the Douglas-Rachford method for two closed sets. Optimization 65, 369–385 (2016)
Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)
Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)
Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19, 62–76 (2008)
Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)
Zheng, X.Y., Ng, K.F.: Metric subregularity for nonclosed convex multifunctions in normed spaces. ESAIM Control Optim. Calc. Var. 16, 601–617 (2010)
Zheng, X.Y., Ng, K.F.: Metric subregularity for proximal generalized equations in Hilbert spaces. Nonlinear Anal. 75, 1686–1699 (2012)
Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73, 413–430 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
AYK was supported by Australian Research Council, project DP160100854.
DRL was supported in part by German Israeli Foundation Grant G-1253-304.6 and Deutsche Forschungsgemeinschaft Research Training Grant 2088 TP-B5.
NHT was supported by German Israeli Foundation Grant G-1253-304.6.
Rights and permissions
About this article
Cite this article
Kruger, A.Y., Luke, D.R. & Thao, N.H. Set regularities and feasibility problems. Math. Program. 168, 279–311 (2018). https://doi.org/10.1007/s10107-016-1039-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-016-1039-x
Keywords
- Alternating projections
- CHIP
- Clarke regularity
- Douglas–Rachford
- Hölder regularity
- Metric regularity
- Normal cone
- Normal qualification condition
- Prox-regularity
- Transversality
- Weak-sharp minima
Mathematics Subject Classification
- Primary 49J53
- 65K10
- Secondary 49K40
- 49M05
- 49M37
- 65K05
- 90C30