Skip to main content

Advertisement

Log in

Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The paper addresses parametric inequality systems described by polynomial functions in finite dimensions, where state-dependent infinite parameter sets are given by finitely many polynomial inequalities and equalities. Such systems can be viewed, in particular, as solution sets to problems of generalized semi-infinite programming with polynomial data. Exploiting the imposed polynomial structure together with powerful tools of variational analysis and semialgebraic geometry, we establish a far-going extension of the Łojasiewicz gradient inequality to the general nonsmooth class of supremum marginal functions as well as higher-order (Hölder type) local error bounds results with explicitly calculated exponents. The obtained results are applied to higher-order quantitative stability analysis for various classes of optimization problems including generalized semi-infinite programming with polynomial data, optimization of real polynomials under polynomial matrix inequality constraints, and polynomial second-order cone programming. Other applications provide explicit convergence rate estimates for the cyclic projection algorithm to find common points of convex sets described by matrix polynomial inequalities and for the asymptotic convergence of trajectories of subgradient dynamical systems in semialgebraic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After submitting the paper we have become familiar with the manuscript [11], where some ideas of applying Hölder error bound to study complexity of some known first-order algorithms in the convex setting are of similar flavors with ours.

  2. The presented simplified proof of this result follows from the suggestions of both referees while incorporating some ideas of [7].

References

  1. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Belousov, E.G., Klatte, D.: A Frank–Wolfe type theorem for convex polynomial programs. Comput. Optim. Appl. 22, 37–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, Erg. Math. Grenzgeb. vol. 36, Springer, Berlin (1998)

  6. Bolte, J., Daniilidis, A., Lewis, A.S.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)

    Article  MATH  Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Borwein, J.M., Li, G., Yao, L.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets. SIAM J. Optim. 24, 498–527 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bregman, L.M.: A method of successive projections for finding a common point of convex sets. Soviet Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  10. Dinh, S.T., Hà, H.V., Phạm, T.S.: Hölder-type global error bounds for non-degenerate polynomial systems, preprint. http://arxiv.org/abs/1411.0859

  11. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order descent methods for convex functions, arXiv:1510.08234v2 (2015)

  12. D’Acunto, D., Kurdyka, K.: Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Ann. Pol. Math. 87, 51–61 (2005)

    Article  MATH  Google Scholar 

  13. Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gfrerer, H., Mordukhovich, B.S.: Complete characterizations of tilt stability in nonlinear programming under weakest qualification conditions. SIAM J. Optim. 25, 2081–2119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Governa, M.A., López, M.A. (eds.): Semi-Infinite Programming: Recent Advances. Springer, Dordrecht (2001)

  16. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Physics 7, 1–24 (1967)

    Article  Google Scholar 

  17. Henrion, D., Lasserre, J.B.: Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Automat. Control 51, 192–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Y.W., Palomar, D.P., Zhang, S.Z.: Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans. Signal Process. 61, 1121–1130 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jongen, HTh, Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: A first order optimality condition and examples. Math. Program. 83, 145–158 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. 84, 137–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruger, A.Y.: Error bounds and Hölder metric subregularity. Set-Valued Var. Anal. 23, 705–736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, G.: On the asymptotic well behaved functions and global error bound for convex polynomials. SIAM J. Optim. 20, 1923–1943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. 137, 37–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G., Mordukhovich, B.S.: Hölder metric subregularity with applications to proximal point method. SIAM J. Optim. 22, 1655–1684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, G., Mordukhovich, B.S., Phạm, T.S.: New fractional error bounds for polynomial systems with applications to Höderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, G., Ng, K.F.: Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems. SIAM J. Optim. 20, 667–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Łojasiewicz, M.S.: Sur la probléme de la division. Stud. Math. 18, 87–136 (1959)

    Article  MATH  Google Scholar 

  28. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  31. Mordukhovich, B.S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22, 953–986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ng, K.F., Zheng, X.Y.: Global error bounds with fractional exponents. Math. Program. 88, 357–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116, 397–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Poliqiun, R.A., Rockafellar, R.T.: Tilt stability of a local minimim. SIAM J. Optim. 8, 287–299 (1998)

    Article  MathSciNet  Google Scholar 

  37. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  38. Thi, H.A., Pham, T.D., Ngai, H.V.: Exact penalty and error bounds in DC programming. J. Global Optim. 52, 509–535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, Z.L., Ye, J.J.: On error bounds for lower semicontinuous functions. Math. Program. 92, 301–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are indebted to both anonymous referees for their careful reading the paper and valuable remarks that allowed us to improve the original presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Mordukhovich.

Additional information

Dedicated to Terry Rockafellar in honor of his 80th birthday.

G. Li: Research of this author was partly supported by Australian Research Council (Project Number: FT130100038).

B. S. Mordukhovich: Research of this author was partly supported by the USA National Science Foundation under Grants DMS-1007132 and DMS-1512846 and by the USA Air Force Office of Scientific Research under Grant No. 15RT0462.

T. S. Phạm: Research of this author was partly supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Mordukhovich, B.S., Nghia, T.T.A. et al. Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates. Math. Program. 168, 313–346 (2018). https://doi.org/10.1007/s10107-016-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1014-6

Keywords

Mathematics Subject Classification

Navigation