Andrew, G., Gao, J.: Scalable training of \({L}_1\)-regularized log-linear models. In: Proceedings of the 24th International Conference on Machine Learning. ACM, pp. 33–40. (2007)
Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)
MathSciNet
MATH
Google Scholar
Banerjee, O., El Ghaoui, L., d’Aspremont, A., Natsoulis, G.: Convex optimization techniques for fitting sparse Gaussian graphical models. In: Proceedings of the 23rd International Conference on Machine learning. ACM, pp. 89–96 (2006)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
MathSciNet
Article
MATH
Google Scholar
Becker, S.R., Candés, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165–218 (2011)
MathSciNet
Article
MATH
Google Scholar
Byrd, R.H., Chin, G.M., Nocedal, J., Oztoprak, F.: A family of second-order methods for convex L1 regularized optimization. Technical report, Optimization Center Report 2012/2, Northwestern University (2012)
Byrd, R.H., Chin, G.M., Nocedal, J., Wu, Y.: Sample size selection in optimization methods for machine learning. Math. Program. 134(1), 127–155 (2012)
MathSciNet
Article
MATH
Google Scholar
Byrd, R.H., Nocedal, J., Schnabel, R.: Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program. 63(4), 129–156 (1994)
MathSciNet
Article
MATH
Google Scholar
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact-Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)
MathSciNet
Article
MATH
Google Scholar
Dontchev, A.L., Rockafellar, R.T.: Convergence of inexact Newton methods for generalized equations. Math. Program. 139, 115–137 (2013)
MathSciNet
Article
MATH
Google Scholar
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. 2. Springer, Berlin (2003)
MATH
Google Scholar
Hsieh, C.J., Sustik, M.A., Ravikumar, P., Dhillon, I.S.: Sparse inverse covariance matrix estimation using quadratic approximation. Adv. Neural Inf. Process. Syst. 24, 2330–2338 (2011)
Google Scholar
Lee, J., Sun, Y., Saunders, M.: Proximal Newton-type methods for convex optimization. In: Advances in Neural Information Processing Systems, pp. 836–844 (2012)
Li, L., Toh, K.C.: An inexact interior point method for L1-regularized sparse covariance selection. Math. Program. Comput. 2(3), 291–315 (2010)
MathSciNet
Article
MATH
Google Scholar
Le Roux, N., Schmidt, M.W., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: NIPS, pp. 1458–1466 (2011)
Milzarek, A., Ulbrich, M.: A semismooth Newton method with multi-dimensional filter globalization for L1-optimization. SIAM J. Optim. 24(1), 298–333 (2014)
MathSciNet
Article
MATH
Google Scholar
Nocedal, Jorge, Wright, Stephen: Numerical Optimization, 2nd edn. Springer, New York (1999)
Book
MATH
Google Scholar
Olsen, P., Oztoprak, F., Nocedal, J., Rennie, S.: Newton-like methods for sparse inverse covariance estimation. In: Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 764–772 (2012)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, London (1970)
MATH
Google Scholar
Patriksson, M.: Cost approximation: a unified framework of descent algorithms for nonlinear programs. SIAM J. Optim. 8(2), 561–582 (1998)
MathSciNet
Article
MATH
Google Scholar
Patriksson, M.: Nonlinear Programming and Variational Inequality Problems, a Unified Approach. Kluwer, Dordrecht (1998)
MATH
Google Scholar
Picka, J.D.: Gaussian Markov random fields: theory and applications. Technometrics 48(1), 146–147 (2006)
MathSciNet
Article
Google Scholar
Salzo, S., Villa, S.: Inexact and accelerated proximal point algorithms. J. Convex Anal. 19(4), 1167–1192 (2012)
MathSciNet
MATH
Google Scholar
Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. Mit Press, Cambridge (2011)
Google Scholar
Tan, X., Scheinberg, K.: Complexity of Inexact Proximal Newton Method. Technical report, Dept. of ISE, Lehigh University (2013)
Tappenden, R., Richtárik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning. arXiv preprint arXiv:1304.5530 (2013)
Yuan, G.-X., Chang, K., Hsie, C., Lin, C.-J.: A comparison of optimization methods and software for large-scale l1-regularized linear classification. J. Mach. Learn. Res. 11(1), 3183–3234 (2010)
MathSciNet
MATH
Google Scholar
Yuan, G.-X., Ho, C.-H., Lin, C.-J.: An improved glmnet for l1-regularized logistic regression. J. Mach. Learn. Res. 13(1), 1999–2030 (2012)
MathSciNet
MATH
Google Scholar