Mathematical Programming

, Volume 158, Issue 1–2, pp 291–327 | Cite as

Data-driven chance constrained stochastic program

Full Length Paper Series A


In this paper, we study data-driven chance constrained stochastic programs, or more specifically, stochastic programs with distributionally robust chance constraints (DCCs) in a data-driven setting to provide robust solutions for the classical chance constrained stochastic program facing ambiguous probability distributions of random parameters. We consider a family of density-based confidence sets based on a general \(\phi \)-divergence measure, and formulate DCC from the perspective of robust feasibility by allowing the ambiguous distribution to run adversely within its confidence set. We derive an equivalent reformulation for DCC and show that it is equivalent to a classical chance constraint with a perturbed risk level. We also show how to evaluate the perturbed risk level by using a bisection line search algorithm for general \(\phi \)-divergence measures. In several special cases, our results can be strengthened such that we can derive closed-form expressions for the perturbed risk levels. In addition, we show that the conservatism of DCC vanishes as the size of historical data goes to infinity. Furthermore, we analyze the relationship between the conservatism of DCC and the size of historical data, which can help indicate the value of data. Finally, we conduct extensive computational experiments to test the performance of the proposed DCC model and compare various \(\phi \)-divergence measures based on a capacitated lot-sizing problem with a quality-of-service requirement.


Stochastic programming Chance constraints  Semi-infinite programming 

Mathematics Subject Classification

90C15 90C34 


  1. 1.
    Ahmed, S.: Convex relaxations of chance constrained optimization problems. Optim. Lett. 8(1), 1–12 (2014). doi: 10.1007/s11590-013-0624-7
  2. 2.
    Ahmed, S., Papageorgiou, D.: Probabilistic set covering with correlations. Oper. Res. 61(2), 438–452 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: Chen, Z.-L., Raghavan, S. (eds.) Tutorials in Operations Research, pp. 261–269. INFORMS, Catonsville (2008)Google Scholar
  4. 4.
    Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manage. Sci. 59(2), 341–357 (2013)CrossRefGoogle Scholar
  5. 5.
    Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer problems under probabilistic constraints. Optim. Methods Softw. 17(3), 359–382 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (1997)MATHGoogle Scholar
  7. 7.
    Calafiore, G.C., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Calafiore, G.C., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–39 (1963)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manage. Sci. 4(3), 235–263 (1958)CrossRefGoogle Scholar
  11. 11.
    Chen, W., Sim, M., Sun, J., Teo, C.P.: From CVaR to uncertainty set: implications in joint chance constrained optimization. Oper. Res. 58(2), 470–485 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)MATHGoogle Scholar
  13. 13.
    Danielsson, J.: Stochastic volatility in asset prices estimation with simulated maximum likelihood. J. Econom. 64(1), 375–400 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Devroye, L., Györfi, L.: Nonparametric Density Estimation: The \(\ell _1\) View. Wiley, Hoboken (1985)MATHGoogle Scholar
  15. 15.
    El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. 107(1), 37–61 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41(2), 263–276 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hu, Z., Hong, L.J.: Kullback–Leibler Divergence Constrained Distributionally Robust Optimization. Technical report, The Hong Kong University of Science and Technology. Available at optimization-online: (2013)
  20. 20.
    Justus, C.G., Hargraves, W.R., Mikhail, A., Graber, D.: Methods for estimating wind speed frequency distributions. J. Appl. Meteorol. 17(3), 350–353 (1978)CrossRefGoogle Scholar
  21. 21.
    Kall, P., Wallace, S.: Stochastic Programming. Wiley, Hoboken (1994)MATHGoogle Scholar
  22. 22.
    Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1–2), 31–56 (2010)MathSciNetMATHGoogle Scholar
  23. 23.
    Kullback, S.: Information Theory and Statistics. Courier Dover Publications, Mineola (1997)MATHGoogle Scholar
  24. 24.
    Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Liao, S., van Delft, C., Vial, J.-P.: Distributionally robust workforce scheduling in call centres with uncertain arrival rates. Optim. Methods Softw. 28(3), 501–522 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Love, D., Bayraksan, G.: Two-stage likelihood robust linear program with application to water allocation under uncertainty. In: Winter Simulation Conference, pp. 77–88 (2013)Google Scholar
  27. 27.
    Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1–2), 219–244 (2014). doi: 10.1007/s10107-013-0684-6
  28. 28.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)CrossRefMATHGoogle Scholar
  31. 31.
    Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty, pp. 3–47. Springer, Berlin (2006)CrossRefGoogle Scholar
  32. 32.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Pagnoncelli, B., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Pardo, L.: Statistical Inference Based on Divergence Measures, vol. 185. CRC Press, Boca Raton (2006)MATHGoogle Scholar
  35. 35.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Popescu, I.: A semidefinite programming approach to optimal-moment bounds for convex classes of distributions. Math. Oper. Res. 30(3), 632–657 (2005)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Citeseer (1970)Google Scholar
  38. 38.
    Prékopa, A.: Stochastic Programming. Springer, Berlin (1995)CrossRefMATHGoogle Scholar
  39. 39.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)Google Scholar
  40. 40.
    Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93(2), 195–215 (2002)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MOS-SIAM Series on Optimization, vol. 9. SIAM, Philadelphia (2009)Google Scholar
  43. 43.
    Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss Inequalities Via Semidefinite Programming. Technical report, Automatic Control Laboratory, Swiss Federal Institute of Technology Zürich (2014)Google Scholar
  44. 44.
    Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Wang, Z., Glynn, P.W., Ye, Y.: Likelihood robust optimization for data-driven problems. arXiv:1307.6279v3.pdf (2014)
  46. 46.
    Wasserman, L.: All of Nonparametric Statistics. Springer, Berlin (2006)MATHGoogle Scholar
  47. 47.
    Yanıkoglu, I., den Hertog, D., Kleijnen, J.: Adjustable Robust Parameter Design with Unknown Distributions. Available at optimization-online: (2014)
  48. 48.
    Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2013)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Zymler, S., Kuhn, D., Rustem, B.: Worst-case value at risk of nonlinear portfolios. Manage. Sci. 59(1), 172–188 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Authors and Affiliations

  1. 1.Department of Systems and Industrial EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations