Agra, A., Constantino, M.: Lotsizing with backlogging and start-ups: the case of Wagner–Whitin costs. Oper. Res. Lett. 25, 81–88 (1999)
MathSciNet
Article
MATH
Google Scholar
Aktürk, M.S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Oper. Res. Lett. 37, 187–191 (2009)
MathSciNet
Article
MATH
Google Scholar
Baptisella, L.F., Geromel, J.: A decomposition approach to problem of unit commitment schedule for hydrothermal systems. IEEE Proc. D Control Theory Appl. 127, 250–258 (1980)
MathSciNet
Article
Google Scholar
Carrion, M., Arroyo, J.M.: A computationally efficient mixed integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21, 1371–1378 (2006)
Article
Google Scholar
Cohen, A.I., Yoshimura, M.: A branch and bound algorithm for unit commitment. IEEE Trans. Power Appar. Syst. PAS–102, 444–451 (1983)
Article
Google Scholar
Constantino, M.: A cutting plane approach to capacitated lot-sizing with start-up costs. Math. Program. 75, 353–376 (1996)
MathSciNet
MATH
Google Scholar
Constantino, M.: Lower bounds in lot-sizing models: a polyhedral study. Math. Oper. Res. 23, 101–118 (1998)
MathSciNet
Article
MATH
Google Scholar
Damcı-Kurt, P.: Mixed-integer programming methods for transportation and power generation problems. Ph.D. Thesis, The Ohio State University (2014)
Fan, W., Guan, X., Zhai, Q.: A new method for unit commitment with ramping constraints. Electr. Power Syst. Res. 62, 215–224 (2002)
Article
Google Scholar
Frangioni, A., Gentile, C.: Solving nonlinear single-unit commitment problems with ramping constraints. Oper. Res. 54, 767–775 (2006)
Article
MATH
Google Scholar
Frangioni, A., Gentile, C., Lacalandra, F.: Solving unit commitment problems with general ramp constraints. Int. J. Electr. Power Energy Syst. 30, 316–326 (2008)
Article
Google Scholar
Frangioni, A., Gentile, C., Lacalandra, F.: Tighter approximated MILP formulations for unit commitment problems. IEEE Trans. Power Syst. 24, 105–113 (2009)
Article
Google Scholar
Garver, L.L.: Power generation scheduling by integer programming-development of theory. Trans. Am. Inst. Electr. Eng. Part III Power App. Syst. 81, 730–734 (1962)
Google Scholar
Havel, P., Šimovič, T.: Optimal planning of cogeneration production with provision of ancillary services. Electr. Power Syst. Res. 95, 47–55 (2013)
Article
Google Scholar
Hobbs, B.F., Rothkopf, M.H., O’Neill, R.P., Chao, H.-P.: The Next Generation of Electric Power Unit Commitment Models. Kluwer Academic Publishers, Norwell (2001)
Google Scholar
Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11, 83–92 (1996)
Article
Google Scholar
Lee, J., Leung, J., Margot, F.: Min-up/min-down polytopes. Discrete Optim. 1, 77–85 (2004)
MathSciNet
Article
MATH
Google Scholar
Lowery, P.G.: Generating unit commitment by dynamic programming. IEEE Trans. Power Appar. Syst. PAS–85, 422–426 (1966)
Article
Google Scholar
Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: Unit commitment by tabu search. IEEE Proceed. Gener. Transm. Distrib. 145, 56–64 (1998)
Article
Google Scholar
Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 28(4), 4897–4908 (2013)
Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment. IEEE Trans. Power Syst. 28(2), 1288–1296 (2013)
Article
Google Scholar
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)
Book
MATH
Google Scholar
Orero, S.O., Irving, M.R.: A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Trans. Power Syst. 13, 501–518 (1998)
Article
Google Scholar
Ostrowski, J., Anjos, M.F., Vannelli, A.: Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Trans. Power Syst. 27, 39–46 (2012)
Article
Google Scholar
Pekelman, D.: Production smoothing with fluctuating price. Manag. Sci. 21(5), 576–590 (1975)
MathSciNet
Article
MATH
Google Scholar
Pochet, Y.: Mathematical programming models and formulations for deterministic production planning problems. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization, Lecture Notes in Computer Science LCNS, vol. 2241, pp. 57–111. Springer, Berlin (2001)
Chapter
Google Scholar
Pochet, Y., Wolsey, L.: Algorithms and reformulations for lot sizing problems. In: Cook, W., Lovasz, L., Seymour, P. (eds.) Combinatorial Optimization, Volume 20 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 245–294. Applied Mathematical Society, Philadelphia (1995)
Google Scholar
Pochet, Y., Wolsey, L.: Production Planning by Mixed Integer Programming. Springer, Berlin (2006)
MATH
Google Scholar
Rajan, D., Takriti, S.: Minimum up/down polytopes of the unit commitment problem with start-up costs. IBM Research Report RC23628, IBM, Yorktown Heights, NY (2005)
Rong, A., Lahdelma, R.: An effective heuristic for combined heat-and-power production planning with power ramp constraints. Appl. Energy 84, 307–325 (2007)
Article
Google Scholar
Saravanan, B., Das, S., Sikri, S., Kothari, D.P.: A solution to the unit commitment problem—a review. Front. Energy 7, 223–236 (2013)
Article
Google Scholar
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
MATH
Google Scholar
Sheble, G.B., Fahd, G.N.: Unit commitment literature synopsis. IEEE Trans. Power Syst. 9, 128–135 (1994)
Article
Google Scholar
Silver, E.A.: A tutorial on production smoothing and work force balancing. Oper. Res. 15(6), 985–1010 (1967)
Article
Google Scholar
Snyder, W.L., Powell, H.D., Rayburn, J.C.: Dynamic programming approach to unit commitment. IEEE Trans. Power Syst. 2, 339–350 (1987)
Article
Google Scholar
Tseng, C.-L., Li, C.A., Oren, S.S.: Solving the unit commitment problem by a unit decommitment method. J. Optim. Theory 105, 707–730 (2000)
MathSciNet
Article
MATH
Google Scholar
Wang, Q., Guan, Y., Wang, J.: A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans. Power Syst. 27, 206–215 (2012)
MathSciNet
Article
Google Scholar
Zhuang, F., Galiana, F.D.: Unit commitment by simulated annealing. IEEE Trans. Power Syst. 5, 311–318 (1990)
Article
Google Scholar