Mathematical Programming

, Volume 154, Issue 1–2, pp 463–491 | Cite as

Two-term disjunctions on the second-order cone

Full Length Paper Series B


Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone and develop a methodology to derive closed-form expressions for convex inequalities describing the resulting convex hull. Our approach is based on first characterizing the structure of undominated valid linear inequalities for the disjunction and then using conic duality to derive a family of convex, possibly nonlinear, valid inequalities that correspond to these linear inequalities. We identify and study the cases where these valid inequalities can equivalently be expressed in conic quadratic form and where a single inequality from this family is sufficient to describe the convex hull. In particular, our results on two-term disjunctions on the second-order cone generalize related results on split cuts by Modaresi, Kılınç, and Vielma, and by Andersen and Jensen.


Mixed-integer conic programming Second-order cone programming Cutting planes Disjunctive cuts 

Mathematics Subject Classification

90C11 90C26 


  1. 1.
    Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) Integer Programming And Combinatorial Optimization, Volume 7801 of Lecture Notes in Computer Science, pp. 37–48. Springer, Berlin (2013)Google Scholar
  2. 2.
    Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. Ser. A 122(1), 1–20 (2010)MATHCrossRefGoogle Scholar
  3. 3.
    Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math. Program. Ser. A 126(2), 351–363 (2011)MATHCrossRefGoogle Scholar
  4. 4.
    Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Applied Mathematics 89, 1–44 (1998) GSIA Management Science Research Report MSRR 348, Carnegie Mellon University, 1974Google Scholar
  7. 7.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)MATHCrossRefGoogle Scholar
  8. 8.
    Belotti, P.: Disjunctive cuts for nonconvex MINLP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 117–144. Springer, New York (2012)CrossRefGoogle Scholar
  9. 9.
    Belotti, P., Goez, J.C., Polik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization (2012).
  10. 10.
    Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math. 161(16), 2778–2793 (2013)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Benson, H.Y., Saglam, U.: Mixed-integer second-order cone programming: a survey. Tutor. Oper. Res., pp. 13–36. INFORMS, Hanover, MD, (2013)Google Scholar
  12. 12.
    Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM J. Optim. 24(2), 643–677 (2014)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatorial Optimization, Volume 6655 of Lecture Notes in Computer Science, pp. 52–64. Springer, Berlin (2011)Google Scholar
  14. 14.
    Bonami, P., Conforti, M., Cornuéjols, G., Molinaro, M., Zambelli, G.: Cutting planes from two-term disjunctions. Oper. Res. Lett. 41, 442–444 (2013)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second-order cone and a nonconvex quadratic (2014).
  16. 16.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)MathSciNetGoogle Scholar
  17. 17.
    Burer, S., Saxena, A.: The MILP road to MIQCP. In: Lee, J., Leyffer, J. (eds.) Mixed Integer Nonlinear Programming, pp. 373–405. Springer, Berlin (2012)Google Scholar
  18. 18.
    Cadoux, F.: Computing deep facet-defining disjunctive cuts for mixed-integer programming. Math. Program. Ser. A 122(2), 197–223 (2010)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Çezik, M., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Program. Ser. A 104(1), 179–202 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Cornuéjols, G., Lemaréchal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. Ser. A 106(3), 567–586 (2006)MATHCrossRefGoogle Scholar
  21. 21.
    Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Oper. Res. Lett. 39, 121–126 (2011)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Drewes, S.: Mixed integer second order cone programming. Ph.D. thesis, Technische Universität Darmstadt, (2009)Google Scholar
  23. 23.
    Drewes, S., Pokutta, S.: Cutting-planes for weakly-coupled 0/1 second order cone programs. Electron. Notes Discrete Math. 36, 735–742 (2010)CrossRefGoogle Scholar
  24. 24.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions edn. Springer, Berlin (2004)Google Scholar
  25. 25.
    Júdice, J.J., Sherali, H., Ribeiro, I.M., Faustino, A.M.: A complementarity-based partitioning and disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. J. Glob. Optim. 136, 89–114 (2006)CrossRefGoogle Scholar
  26. 26.
    Kılınç, M.R., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear programs (2010).
  27. 27.
    Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. GSIA Working Paper Number: 2013–E20, Carnegie Mellon University (2013).
  28. 28.
    Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. In: Lee, J., Vygen, J. (eds.) Integer Programming and Combinatorial Optimization, Volume 8494 of Lecture Notes in Computer Science, pp. 345–356. Springer, Berlin (2014)Google Scholar
  29. 29.
    Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. Ser. A (2015).
  30. 30.
    Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43, 10–15 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, New Jersey (1970)Google Scholar
  32. 32.
    Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained programs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization, volume 5035 of Lecture Notes in Computer Science, pp. 17–33. Springer, (2008)Google Scholar
  33. 33.
    Sherali, H.D., Shetti, C.: Optimization with Disjunctive Constraints. Springer, Berlin (1980)MATHCrossRefGoogle Scholar
  34. 34.
    Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Tawarmalani, M., Richard, J.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. Ser. B 124(1–2), 481–512 (2010)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone (2014).

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Authors and Affiliations

  1. 1.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations