Mathematical Programming

, Volume 151, Issue 1, pp 191–223 | Cite as

On mathematical programming with indicator constraints

  • Pierre Bonami
  • Andrea Lodi
  • Andrea Tramontani
  • Sven Wiese
Full Length Paper Series B

Abstract

In this paper we review the relevant literature on mathematical optimization with logical implications, i.e., where constraints can be either active or disabled depending on logical conditions to hold. In the case of convex functions, the theory of disjunctive programming allows one to formulate these logical implications as convex nonlinear programming problems in a space of variables lifted with respect to its original dimension. We concentrate on the attempt of avoiding the issue of dealing with large NLPs. In particular, we review some existing results that allow to work in the original space of variables for two relevant special cases where the disjunctions corresponding to the logical implications have two terms. Then, we significantly extend these special cases in two different directions, one involving more general convex sets and the other with disjunctions involving three terms. Computational experiments comparing disjunctive programming formulations in the original space of variables with straightforward bigM ones show that the former are computationally viable and promising.

Keywords

Disjunctive programming bigM method Perspective reformulation On/off constraints  

Mathematics Subject Classification

Primary 90C11 Secondary 90C25 90C57 

References

  1. 1.
    Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 34, 391–401 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aktürk, S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Technical Report BCOL Research Report 07.01, Industrial Engineering and Operations Research, University of California, Berkeley (2007)Google Scholar
  3. 3.
    Ascheuer, N.: Hamiltonian Path Problems in the On-line Optimization of Flexible Manufacturing Systems. PhD thesis, Technische Universität Berlin (1995)Google Scholar
  4. 4.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 259–324 (1993)Google Scholar
  7. 7.
    Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Balas, E., Jeroslow, R.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., Salvagnin, D.: On handling indicator constraints in mixed-integer programming. Technical Report OR/13/1, revised OR/14/20, DEI, University of Bologna (2014)Google Scholar
  10. 10.
    Belotti, P., Liberti, L., Lodi, A., Nannicini, G., Tramontani, A.: Disjunctive inequalities: applications and extensions. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 2, pp. 1441–1450. Wiley, New York (2011)Google Scholar
  11. 11.
    Ben-Ameur, W., Ouorou, A.: Mathematical models of the delay-constrained routing problem. Algorithmic Oper. Res. 1, 94–103 (2006)MATHMathSciNetGoogle Scholar
  12. 12.
    Blażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127, 317–331 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük, O., Woeginger, G. (eds.) Integer Programming and Combinatorial Optimization, Volume 6655 of Lecture Notes in Computer Science, pp. 52–64. Springer, Berlin (2011)Google Scholar
  14. 14.
    Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4, 151–179 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bonami, P., Linderoth, J.T., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. In: Majoub, R. (ed.) Progress in Combinatorial Optimization, pp. 521–544. Wiley/ISTE, New York (2011)Google Scholar
  16. 16.
    Brooks, J.P.: Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59, 467–479 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Conjunctive Normal Form. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001)Google Scholar
  19. 19.
    Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag. Sci. 23, 789–810 (1977)CrossRefMATHGoogle Scholar
  20. 20.
    Dash, S., Günlük, O., Lodi, A., Tramontani, A.: A time bucket formulation for the traveling salesman problem with time windows. INFORMS J. Comput. 24, 132–147 (2012)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf. Serv. Oper. Manag. 8, 92–97 (2006)Google Scholar
  22. 22.
    Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128, 205–230 (2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  24. 24.
    Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Furman, K., Grossmann, I.E., Sawaya, N.: A useful algebraic representation of disjunctive convex sets using the perspective function. In: Conference talk MINLP, Pittsburgh (2014)Google Scholar
  26. 26.
    Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26, 83–100 (2003)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete–continuous optimization models through generalized disjunctive programming. AIChE J. 59(9), 3276–3295 (2013)CrossRefGoogle Scholar
  28. 28.
    Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separaable convex quadratic transportation-cost UFL. Technical Report RC24213 (W0703–042), IBM Research Division (2007)Google Scholar
  29. 29.
    Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, Volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 61–89. Springer, New York (2012)CrossRefGoogle Scholar
  30. 30.
    Hijazi, H.: Mixed-Integer Nonlinear Optimization Approaches for Network Design in Telecommunications. PhD thesis, Université d’Aix-Marseille II (2010)Google Scholar
  31. 31.
    Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed integer nonlinear programs featuring “on/off” constraints. Comput. Optim. Appl. 52, 537–558 (2012)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Hijazi, H., Liberti, L.: Constraint qualification failure in second-order cone formulations of unbounded disjunctions. Technical Report, NICTA, Canberra ACT Australia (2014)Google Scholar
  33. 33.
    Jeroslow, R., Lowe, J.: Modelling with integer varibales. In: Korte, B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach II, Volume 22 of Mathematical Programming Studies, pp. 167–184. Springer, Berlin (1984)CrossRefGoogle Scholar
  34. 34.
    Kılınç, M.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Programming. PhD thesis, University of Wisconsin-Madison (2011)Google Scholar
  35. 35.
    Kılınç, M., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear programs. Technical Report TR1681, Computer Sciences Department, University of Wisconsin-Madison (2010)Google Scholar
  36. 36.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: Miplib 2010. Math. Program. Comput. 3, 103–163 (2011)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. SIAM-MOS series on Optimization. SIAM, Philadelphia (2014)Google Scholar
  38. 38.
    Lawrence, S.: Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques. GSIA, Carnegie Mellon University, Pittsburgh (1984)Google Scholar
  39. 39.
    Lee, S., Grossmann, I.E.: New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24, 2125–2141 (2000)CrossRefGoogle Scholar
  40. 40.
    Lodi, A.: Indicator constraints in mixed-integer programming. In: Conference Talk MIP, Columbus (2014)Google Scholar
  41. 41.
    Lodi, A.: Mixed integer programming computation. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer, Berlin (2010)Google Scholar
  42. 42.
    Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Tramontani, A.: Lift-and-project cuts in CPLEX 12.5.1. In: Conference Talk INFORMS, Minneapolis (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Authors and Affiliations

  • Pierre Bonami
    • 1
  • Andrea Lodi
    • 2
  • Andrea Tramontani
    • 3
  • Sven Wiese
    • 2
  1. 1.CPLEX OptimizationIBM SpainMadridSpain
  2. 2.Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”Università di BolognaBolognaItaly
  3. 3.CPLEX OptimizationIBM ItalyBolognaItaly

Personalised recommendations