Skip to main content
Log in

Simple extensions of polytopes

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We introduce the simple extension complexity of a polytope \(P\) as the smallest number of facets of any simple (i.e., non-degenerate in the sense of linear programming) polytope which can be projected onto \(P\). We devise a combinatorial method to establish lower bounds on the simple extension complexity and show for several polytopes that they have large simple extension complexities. These examples include both the spanning tree and the perfect matching polytopes of complete graphs, uncapacitated flow polytopes for non-trivially decomposable directed acyclic graphs, hypersimplices, and random 0/1-polytopes with vertex numbers within a certain range. On our way to obtain the result on perfect matching polytopes we generalize a result of Padberg and Rao’s on the adjacency structures of those polytopes. In addition to the material in the extended abstract (Kaibel and Walter in Integer programming and combinatorial optimization. Lecture Notes in Computer Science, vol 8494. Springer, Berlin, 2014) we include omitted proofs, supporting figures, and an analysis of known upper bounding techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.) Automata, Languages, and Programming, volume 7965 of Lecture Notes in Computer Science, pp. 57–68. Springer, Berlin (2013)

    Google Scholar 

  2. Balas, E.: Disjunctive Programming: Properties of the Convex Hull of Feasible Points. MSRR 348, Carnegie Mellon University, Pittsburg, PA (1974)

    Google Scholar 

  3. Balas, E.: Disjunctive programming. In: Johnson, E.L., Hammer, P.L., Korte, B.H. (eds.) Discrete Optimization II. Annals of Discrete Mathematics, vol. 5, pp. 3–51. Elsevier (1979). http://dx.doi.org/10.1016/S0167-5060(08)70342-X

  4. Bienstock, D.: Approximate formulations for 0–1 knapsack sets. Oper. Res. Lett. 36(3), 317–320 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carr, R.D., Konjevod, G.: Polyhedral combinatorics. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research volume 76 of International Series in Operations Research and Management Science, chapter 2, pp. 1–46. Springer, Berlin (2005)

    Google Scholar 

  6. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory Ser. B 18(2), 138–154 (1975)

    Article  MATH  Google Scholar 

  7. Dantzig, G.B.: Linear Programming and Extensions. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1963)

    Google Scholar 

  8. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discrete Math. 313(1), 67–83 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 95–106. ACM, New York (2012)

  10. Gallo, G., Sodini, C.: Extreme points and adjacency relationship in the flow polytope. Calcolo 15, 277–288 (1978). doi:10.1007/BF02575918

    Article  MATH  MathSciNet  Google Scholar 

  11. Gillmann, R.: 0/1-Polytopes typical and extremal properties. PhD thesis, Technische Universität, Berlin (2007)

  12. Goemans, M.: Smallest compact formulation for the permutahedron. http://www-math.mit.edu/goemans/publ.html (2009)

  13. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: Günlük, O., Woeginger, G. (eds.) Integer Programming and Combinatorial Optimization. Proceedings of IPCO XV, New York, NY volume 6655 of Lecture Notes in Computer Science, pp. 287–300. Springer, Berlin (2011)

    Google Scholar 

  14. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for sizes of extended formulations. SIAM J. Discrete Math. 26(3), 1361–1382 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kaibel, V., Walter, M.: Simple extensions of polytopes. In: Lee, J., Vygen, J. (eds.) Integer Programming and Combinatorial Optimization. Proceedings of IPCO XVII, Bonn, volume 8494 of Lecture Notes in Computer Science. Springer, Berlin (2014)

    Google Scholar 

  16. Kipp Martin, R.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7, 32–45 (1974). doi:10.1007/BF01585502

    Article  MATH  MathSciNet  Google Scholar 

  18. Pashkovich, K.: Tight lower bounds on the sizes of symmetric extensions of permutahedra and similar results. Math. Oper. Res. 39(4), 1330–1339 (2014)

    Article  MathSciNet  Google Scholar 

  19. Pokutta, S., Van Vyve, M.: A note on the extension complexity of the knapsack polytope. Oper. Res. Lett. 41(4), 347–350 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rothvoss, T.: Some 0/1 polytopes need exponential size extended formulations. Math. Program., Ser. A 142, 255–268 (2013)

  21. Rothvoss, T.: The matching polytope has exponential extension complexity. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’14, New York, NY, USA, pp. 263–272. ACM, New York (2014)

  22. Santos, F.: A counterexample to the hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MATH  Google Scholar 

  23. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ziegler, G.M.: Lectures on Polytopes (Graduate Texts in Mathematics). Springer, Berlin (2001)

    Google Scholar 

Download references

Acknowledgments

We are greatful to the referees whose comments lead to significant improvements in the presentation of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Walter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaibel, V., Walter, M. Simple extensions of polytopes. Math. Program. 154, 381–406 (2015). https://doi.org/10.1007/s10107-015-0885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0885-2

Keywords

Mathematics Subject Classification

Navigation