Amaral, P., Bomze, I.M., Júdice, J.: Copositivity and constrained fractional quadratic problems. Math. Program. 146(1–2), 325–350 (2014)
Article
MATH
MathSciNet
Google Scholar
Anjos, M., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization Handbook on Semidefinite, Conic and Polynomial Optimization, volume 166 of International Series in Operations Research & Management Science. Springer, Berlin (2012)
Arima, N., Kim, S., Kojima, M. A Quadratically Constrained Quadratic Optimization Model for Completely Positive Cone Programming. Technical Report B-468, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology. http://www.optimization-online.org/DB_FILE/2012/09/3600.pdf (2012)
Bai, L., Mitchell, J.E., Pang, J.: On QPCCs, QCQPs and Copositive Programs. Technical report, Rensselaer Polytechnic Institute. http://eaton.math.rpi.edu/faculty/Mitchell/papers/QCQP_QPCC.html (2012)
Bertsekas, D.P.: Non-linear Programming. Athena Scientific, Belmont, MA (1995)
Google Scholar
Bertsimas, D., Popescu, I.: On the relation between option and stock prices: an optimization approach. Oper. Res. 50, 358–374 (2002)
Article
MATH
MathSciNet
Google Scholar
Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)
Article
MATH
MathSciNet
Google Scholar
Blekherman, G., Parrilo, P., and Thomas, R. (eds): Semidefinite Optimization and Convex Algebraic Geometry, volume 13 of MOS-SIAM Series on Optimization. SIAM, Philadelphia (2012)
Bomze, I., de Klerk, E.: Solving standard quadratic optimization problems via semidefinite and copositive programming. J. Global Optim. 24(2), 163–185 (2002)
Article
MATH
MathSciNet
Google Scholar
Bomze, I., Jarre, F.: A note on Burer’s copositive representation of mixed-binary QPs. Optim. Lett. 4(3), 465–472 (2010)
Article
MATH
MathSciNet
Google Scholar
Bomze, I.M.: Copositive optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 561–564. Springer, Berlin (2009)
Chapter
Google Scholar
Bomze, I.M.: Copositive Relaxation Beats Lagrangian Dual Bounds In Quadratically And Linearly Constrained QPs. Technical Report NI13064-POP, Isaac Newton Institute (2013)
Bomze, I.M.: Copositive-Based Approximations for Binary and Ternary Fractional Quadratic Optimization. Technical Report NI14043-POP, Isaac Newton Institute (2014)
Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)
Article
MATH
Google Scholar
Bomze, I.M., Jarre, F., Rendl, F.: Quadratic factorization heuristics for copositive programming. Math. Program. Comput. 3(1), 37–57 (2011)
Article
MATH
MathSciNet
Google Scholar
Bundfuss, S.: Copositive Matrices, Copositive Programming, and Applications. Ph.D. thesis, TU Darmstadt (2009)
Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20(1), 30–53 (2009)
Article
MATH
MathSciNet
Google Scholar
Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)
Article
MATH
MathSciNet
Google Scholar
Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40(3), 203–206 (2012)
Article
MATH
MathSciNet
Google Scholar
Burer, S., Kim, S., Kojima, M.: Faster, but weaker, relaxations for quadratically constrained quadratic programs. Comput. Optim. Appl. 59(1–2), 27–45 (2014)
Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)
Article
MATH
MathSciNet
Google Scholar
de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comput. Sci. 361(2–3), 210–225 (2006)
Article
MATH
Google Scholar
de Klerk, E., Pasechnik, D.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)
Article
MATH
MathSciNet
Google Scholar
Dickinson, P.J., Eichfelder, G., Povh, J.: Erratum to: On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets [optim. letters, 2012]. Optim. Lett. 7(6), 1387–1397 (2013)
Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: An inequality for circle packings proved by semidefinite programming. Phys. Rev. A 69, 022308 (2004)
Article
Google Scholar
Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. SIAM J. Optim. 23(3), 1850–1866 (2013)
Article
MATH
MathSciNet
Google Scholar
Dong, H., Anstreicher, K.: Separating doubly nonnegative and completely positive matrices. Math. Program. Ser. A 137, 131–153 (2013)
Article
MATH
MathSciNet
Google Scholar
Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2), 249–268 (2010)
Article
MATH
MathSciNet
Google Scholar
Dür, M.: Copositive programming–a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)
Chapter
Google Scholar
Eichfelder, G., Povh, J.: On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets. Optim. Lett. 6(2), 1–14 (2012)
MathSciNet
Google Scholar
Genin, Y., Hachez, Y., Nesterov, Y., and Dooren, P. V.: Convex optimization over positive polynomials and filter design. In: Proceedings of UKACC Intenational Conference on Control (2000)
Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20, 2097–2118 (2010)
Article
MATH
MathSciNet
Google Scholar
Gvozdenović, N., Laurent, M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 3509, 136–151 (2005)
Gvozdenović, N., Laurent, M.: The operator \(\psi \) for the chromatic number of a graph. SIAM J. Optim. 19(2), 572–591 (2008)
Article
MATH
MathSciNet
Google Scholar
Kim, S., Kojima, M., Toh, K.: A Lagrangian-DDN Relaxation: A Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems. Technical report. http://www.optimizationonlineorg/DBHTML/2013/10/4073.html (2013)
Lasserre, J.: Global optimization problems with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
Article
MATH
MathSciNet
Google Scholar
Lasserre, J.: Bounds on measures satisfying moment conditions. Ann. Appl. Probab. 12, 1114–1137 (2002a)
Article
MATH
MathSciNet
Google Scholar
Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0–1 programs. SIAM J. Optim. 12, 756–769 (2002b)
Article
MATH
MathSciNet
Google Scholar
Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 integer programming. Math. Oper. Res. 28(3), 470–496 (2003a)
Article
MATH
MathSciNet
Google Scholar
Laurent, M.: Lower bound for the number of iterations in semidefinite relaxations for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003b)
Laurent, M.: Copositive vs. moment hierarchies for stable sets. Optima 89, 8–10 (2012)
Google Scholar
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)
Article
MATH
Google Scholar
Natarajan, K., Teo, C.P., Zheng, Z.: Mixed 0–1 linear programs under objective uncertainty: a completely positive representation. Oper. Res. 59(3), 713–728 (2011)
Article
MATH
MathSciNet
Google Scholar
Nesterov, Y.: Structure of Non-negative Polynomials and Optimization Problems. Technical Report 9749, CORE (1997)
Nie, J.: Sum of squares method for sensor network localization. Comput. Optim. Appl. 43(2), 151–179 (2009)
Article
MATH
MathSciNet
Google Scholar
Papachristodoulou, A., Peet, M.M., Lall, S.: Analysis of polynomial systems with time delays via the sum of squares decomposition. IEEE Trans. Autom. Control 54(5), 1058–1064 (2009)
Article
MathSciNet
Google Scholar
Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, CA (2000)
Parrilo, P.A., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428(10), 2385–2402 (2008)
Article
MATH
MathSciNet
Google Scholar
Peña, J., Vera, J., Zuluaga, L.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)
Article
MATH
MathSciNet
Google Scholar
Pólya, G.: Üher positive Darstellung von Polynomen. Vierteljschr. Naturforsch. Ges. Zürich 73, 141–145. (also Collected Papers, vol. 2, 309–313, MIT Press, Cambridge, MA, 1974) (1928)
Povh, J., Rendl, F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18(1), 223–241 (2007)
Article
MATH
MathSciNet
Google Scholar
Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)
Article
MATH
MathSciNet
Google Scholar
Reznick, B.: On Hilbert’s Construction of Positive Polynomials. Technical report, University of Illinois at Urbana-Champaign. www.math.uiuc.edu/reznick/paper53.pdf (2007)
Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton (1970)
MATH
Google Scholar
Rockafellar, T., Wets, R.: Variational Analysis. Springer, Berlin (1998)
Book
MATH
Google Scholar
Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991)
Article
MATH
MathSciNet
Google Scholar
Schrijver, A.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory 25(4), 425–429 (1979)
Article
MATH
MathSciNet
Google Scholar
Schweighofer, M.: An algorithmic approach to Schmüdgen’s positivstellensatz. J. Pure Appl. Algebra 166(3), 307–319 (2002)
Article
MATH
MathSciNet
Google Scholar
Shor, N.: Class of global minimum bounds of polynomial functions. Cybernetics 23, 731–734 (1987)
Article
MATH
Google Scholar
Zuluaga, L., Vera, J., Peña, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16, 1076–1091 (2006)