Skip to main content
Log in

Solving second-order conic systems with variable precision

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We describe and analyze an interior-point method to decide feasibility problems of second-order conic systems. A main feature of our algorithm is that arithmetic operations are performed with finite precision. Bounds for both the number of arithmetic operations and the finest precision required are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.mosek.com/.

  2. http://www.ilog.com/products/cplex/.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartels, R.H.: A stabilization of the simplex method. Numer. Math. 16, 414–434 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

  4. Cheung, D., Cucker, F.: Solving linear programs with finite precision: II. Algorithms. J. Complex. 22, 305–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clasen, R.J.: Techniques for automatic tolerance control in linear programming. Commun. ACM 9, 802–803 (1966)

    Article  MATH  Google Scholar 

  6. Cucker, F., Peña, J.: A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine. SIAM J. Optim. 12, 522–554 (2002)

    Article  Google Scholar 

  7. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

  8. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

  9. Lewis, A.: Ill-conditioned convex processes and linear inequalities. Math. Oper. Res. 24, 829–834 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lewis, A.: Ill-conditioned inclusions. Set-Valued Anal. 9, 375–381 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ogryczak, W.: The simplex method is not always well behaved. Linear Algebra Appl. 109, 41–57 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Peña, J.: Understanding the geometry of infeasible perturbations of a conic linear system. SIAM J. Optim. 10, 534–550 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Peña, J., Renegar, J.: Computing approximate solutions for conic systems of constraints. Math. Program. 87, 351–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. SIAM, Philadelphia (2000)

  15. Renegar, J.: Is it possible to know a problem instance is ill-posed? J. Complex. 10, 1–56 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program. 70, 279–351 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Robinson, S.M.: A characterization of stability in linear programming. Oper. Res. 25, 435–447 (1977)

    Article  MATH  Google Scholar 

  18. Sousa Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Storoy, S.: Error control in the simplex-technique. BIT 7, 216–225 (1967)

    Article  MATH  Google Scholar 

  20. Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11, 141–182 (1999)

    Article  MathSciNet  Google Scholar 

  21. Vera, J.R.: On the complexity of linear programming under finite precision arithmetic. Math. Program. 80, 91–123 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Vera, J.C., Rivera, J.C., Pe na, J., Hui, Y.: A primal-dual symmetric relaxation for homogeneous conic systems. J. Complex. 23, 245–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wolfe, P.: Error in the solution of linear programming problems. In: Ball, L.R. (ed.) Error in Digital Computation, pp. 271–284. Wiley, London (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Peña.

Additional information

Partially supported by GRF grant CityU 100810.

Supported by NSF grant CCF-0830533.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cucker, F., Peña, J. & Roshchina, V. Solving second-order conic systems with variable precision. Math. Program. 150, 217–250 (2015). https://doi.org/10.1007/s10107-014-0767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0767-z

Keywords

Mathematics Subject Classification

Navigation