Skip to main content
Log in

Set intersection problems: supporting hyperplanes and quadratic programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study how the supporting hyperplanes produced by the projection process can complement the method of alternating projections and its variants for the convex set intersection problem. For the problem of finding the closest point in the intersection of closed convex sets, we propose an algorithm that, like Dykstra’s algorithm, converges strongly in a Hilbert space. Moreover, this algorithm converges in finitely many iterations when the closed convex sets are cones in \({\mathbb {R}}^{n}\) satisfying an alignment condition. Next, we propose modifications of the alternating projection algorithm, and prove its convergence. The algorithm converges superlinearly in \({\mathbb {R}}^{n}\) under some nice conditions. Under a conical condition, the convergence can be finite. Lastly, we discuss the case where the intersection of the sets is empty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bauschke, H.H.: Projection algorithms: results and open problems, inherently parallel algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Feasibility and Optimization and their Applications, pp. 11–22. Elsevier, Amsterdam (2001)

  2. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Program. Ser. A 86(1), 135–160 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. Algorithms 41, 239–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bregman, L.M., Censor, Y., Reich, S., Zepkowitz-Malachi, Y.: Finding the projection of a point onto the intersection of convex sets via projections onto half-spaces. J. Approx. Theory 124, 194–218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference, Lecture notes in Statistics, pp. 28–47. Springer, New York (1985)

  8. Bauschke, H.H., Deutsch, F., Hundal, H.S., Park, S.-H.: Accelerating the convergence of the method of alternating projections. Trans. Am. Math. Soc. 355(9), 3433–3461 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Birgin, E.G., Raydan, M.: Dykstra’s algorithm and robust stopping criteria. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 828–833. Springer, USA (2009)

    Chapter  Google Scholar 

  10. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, NY (2005). CMS Books in Mathematics

  11. Cegielski, A., Censor, Y.: Opial-type theorems and the common fixed point problem. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 155–183. Springer, Berlin (2011)

    Chapter  Google Scholar 

  12. Deutsch, F.: The angle between subspaces of a Hilbert space. In: Singh, S.P. (ed.) Approximation Theory Spline Functions and Applications, pp. 107–130. Kluwer, The Netherlands (1995)

    Google Scholar 

  13. Deutsch, F.: Accelerating the convergence of the method of alternating projections via a line search: a brief survey. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 203–217. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  14. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer (2001). CMS Books in Mathematics

  15. Dykstra, R.L.: An algorithm for restricted least-squares regression. J. Am. Stat. Assoc. 78, 837–842 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Escalante, R., Raydan, M.: Alternating Projection Methods. SIAM (2011)

  17. Fletcher, R., Leyffer, S.: Filter-type algorithms for solving systems of algebraic equations and inequalities. In: di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 265–284. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  18. Gearhart, W.B., Koshy, M.: Acceleration schemes for the method of alternating projections. J. Comput. Appl. Math. 26, 235–249 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. García-Palomares, U.M.: A superlinearly convergent projection algorithm for solving the convex inequality problem. Oper. Res. Lett. 22, 97–103 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. García-Palomares, U.M.: Superlinear rate of convergence and optimal acceleration schemes in the solution of convex inequality problems. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 297–305. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  21. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967)

    Article  Google Scholar 

  22. Han, S.P.: A successive projection method. Math. Program. 40, 1–14 (1988)

    Article  MATH  Google Scholar 

  23. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I & II. Springer, Berlin (1993). Grundlehren der mathematischen Wissenschaften, vols. 305 and 306

  24. Hundal, H.S.: An alternating projection that does not converge in norm. Nonlinear Anal. 57(1), 35–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55(3), 501–558 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kiwiel, K.C.: Block-iterative surrogate projection methods for convex feasibility problems. Linear Algebra Appl. 215, 225–259 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moreau, J.-J.: Décomposition orthogonale d’un espace hilbertien selon seux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962)

    MATH  MathSciNet  Google Scholar 

  30. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9, 187–216 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  32. Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Program. Ser. A 99, 521–538 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28, 96–115 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  35. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

Download references

Acknowledgments

We thank Boris Mordukhovich for asking the question of whether the alternating projection algorithm can achieve superlinear convergence at the ISMP in 2012 during Russell Luke’s talk, which led to the idea of considering supporting hyperplanes. We also thank the referees and associate editor for their helpful suggestions and additional references. The author gratefully acknowledges his startup grant at NUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Jeffrey Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, C.H.J. Set intersection problems: supporting hyperplanes and quadratic programming. Math. Program. 149, 329–359 (2015). https://doi.org/10.1007/s10107-014-0759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0759-z

Keywords

Mathematics Subject Classification (1991)

Navigation