Minimum concave cost flow over a grid network


The minimum concave cost network flow problem (MCCNFP) is NP-hard, but efficient polynomial-time algorithms exist for some special cases such as the uncapacitated lot-sizing problem and many of its variants. We study the MCCNFP over a grid network with a general nonnegative separable concave cost function. We show that this problem is polynomially solvable when all sources are in the first echelon and all sinks are in two echelons, and when there is a single source but many sinks in multiple echelons. The polynomiality argument relies on a combination of a particular dynamic programming formulation and an investigation of the extreme points of the underlying flow polyhedron. We derive an analytical formula for the inflow into any node in an extreme point solution, which generalizes a result of Zangwill (Manag Sci 14(7):429–450, 1968) for the multi-echelon lot-sizing problem.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Aggarwal, A., Park, J.K.: Improved algorithms for economic lot size problems. Oper. Res. 41(3), 549–571 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)

    Google Scholar 

  3. 3.

    Atamtürk, A., Küçükyavuz, S.: Lot sizing with inventory bounds and fixed costs: polyhedral study and computation. Oper. Res. 53(4), 711–730 (2005)

    Article  MATH  Google Scholar 

  4. 4.

    Atamtürk, A., Küçükyavuz, S.: An \({O}(n^2)\) algorithm for lot sizing with inventory bounds and fixed costs. Oper. Res. Lett. 36(3), 297–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Dekker, R., Fleischmann, M., Inderfurth, K., Van Wassenhove, L.N. (eds.): Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer, Berlin (2004)

    Google Scholar 

  6. 6.

    Erickson, R.E., Monma, C.L., Veinott Jr, A.F.: Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot sizing models with \(n\) periods in \({O}(n\log n)\) or \({O}(n)\) time. Manag. Sci. 37(8), 909–925 (1991)

    Article  MATH  Google Scholar 

  8. 8.

    Florian, M., Klein, M.: Deterministic production planning with concave costs and capacity constraints. Manag. Sci. 18(1), 12–20 (1971)

    Article  MathSciNet  Google Scholar 

  9. 9.

    Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25(1), 75–99 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Guisewite, G.M., Pardalos, P.M.: A polynomial time solvable concave network flow problem. Networks 23(2), 143–147 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Kaminsky, P., Simchi-Levi, D.: Production and distribution lot sizing in a two stage supply chain. IIE Trans. 35(11), 1065–1075 (2003)

    Article  Google Scholar 

  12. 12.

    Martin, R.: Generating alternative mixed-integer programming models using variable redefinition. Oper. Res. 35(6), 820–831 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)

    Google Scholar 

  14. 14.

    Tuy, H., Ghannadan, S., Migdalas, A., Värbrand, P.: The minimum concave cost network flow problem with fixed numbers of sources and nonlinear arc costs. J. Glob. Optim. 6(2), 135–151 (1995)

    Article  MATH  Google Scholar 

  15. 15.

    Tuy, H., Ghannadan, S., Migdalas, A., Värbrand, P.: A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables. Math. Program. 72(3), 229–258 (1996)

    Article  MATH  Google Scholar 

  16. 16.

    van den Heuvel, W., Wagelmans, A.P.: Four equivalent lot-sizing models. Oper. Res. Lett. 36(4), 465–470 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    van Hoesel, S., Romeijn, H.E., Morales, D.R., Wagelmans, A.P.: Integrated lot sizing in serial supply chains with production capacities. Manag. Sci. 51(11), 1706–1719 (2005)

    Article  MATH  Google Scholar 

  18. 18.

    Wagelmans, A., van Hoesel, S., Kolen, A.: Economic lot sizing: an \({O}(n\log n)\) algorithm that runs in linear time in the Wagner–Whitin case. Oper. Res. 40(1), 145–156 (1992)

    Article  MathSciNet  Google Scholar 

  19. 19.

    Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5(1), 89–96 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Zangwill, W.I.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429–450 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Zangwill, W.I.: A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach. Manag. Sci. 15(9), 506–527 (1969)

    Article  MATH  Google Scholar 

  22. 22.

    Zhang, M., Küçükyavuz, S., Yaman, H.: A polyhedral study of multi-echelon lot sizing with intermediate demands. Oper. Res. 60(4), 918–935 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shabbir Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, Q., Ahmed, S. & Nemhauser, G.L. Minimum concave cost flow over a grid network. Math. Program. 150, 79–98 (2015).

Download citation


  • Min concave cost flow
  • Grid network
  • Lot-sizing model

Mathematics Subject Classification

  • 90B05
  • 90B10
  • 90B30
  • 90C11
  • 90C35