Skip to main content
Log in

Smooth hyperbolicity cones are spectrahedral shadows

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that is, a spectrahedral shadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H., Güler, O., Lewis, A., Sendov, H.: Hyperbolic polynomials and convex analysis. Can. J. Math. 53(3), 470–488 (2001)

    Article  MATH  Google Scholar 

  2. Brändén, P.: Hyperbolicity cones of elementary symmetric polynomials are spectrahedral. Optim. Lett. (2012). doi:10.1007/s11590-013-0694-6

  3. Brändén, P.: Obstructions to determinantal representability. Adv. Math. 226(2), 1202–1212 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choe, Y.B., Oxley, J.G., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1–2), 88–187 (2004). Special issue on the Tutte polynomial

    Google Scholar 

  5. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MATH  MathSciNet  Google Scholar 

  6. Güler, O.: Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22(2), 350–377 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gurvits, L.: Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: one theorem for all. Electron. J. Combin. 15(1), (2008) Research Paper 66, 26

    Google Scholar 

  8. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), Ser. A, 21–64 (2010)

    Google Scholar 

  9. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Helton, J.W., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lax, P.D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11, 175–194 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lewis, A.S., Parrilo, P.A., Ramana, M.V.: The Lax conjecture is true. Proc. Am. Math. Soc. 133(9), 2495–2499 (2005) (electronic)

    Google Scholar 

  13. Netzer, T., Sinn, R.: A note on the convex hull of finitely many projections of spectrahedra. arXiv:0908.3386

  14. Nuij, W.: A note on hyperbolic polynomials. Math. Scand. 23(1968), 69–72 (1969)

    MathSciNet  Google Scholar 

  15. Renegar, J.: Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6(1), 59–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Renegar, J.: Central swaths: a generalization of the central path. Found. Comput. Math. 13(3), 405–454 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sanyal, R.: On the derivative cones of polyhedral cones. Adv. Geom. 13(2), 315–321 (2013). doi:10.1515/advgeom-2011-051

  18. Vinnikov, V.: LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future. In: Dym, H., de Oliveira, M.C., Putinar, M. (eds.) Mathematical Methods in Systems, Optimization, and Control. Operator Theory: Advances and Applications, vol. 222, Springer Basel, Heidelberg, pp. 325–349 (2012). doi:10.1007/978-3-0348-0411-0_23

  19. Webster, R.: Convexity. Oxford Science Publications, The Clarendon Press Oxford University Press, New York (1994)

Download references

Acknowledgments

We would like to thank Daniel Plaumann for many inspiring discussions on the topic and the referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Netzer.

Additional information

Raman Sanyal has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 247029.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netzer, T., Sanyal, R. Smooth hyperbolicity cones are spectrahedral shadows. Math. Program. 153, 213–221 (2015). https://doi.org/10.1007/s10107-014-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0744-6

Keywords

Mathematics Subject Classification (1991)

Navigation