Achuthan, N.R., Caccetta, L., Caccetta, P., Geelen, J.F.: Computational methods for the diameter restricted minimum weight spanning tree problem. Australas. J. Comb. 10, 51–71 (1994)
MATH
MathSciNet
Google Scholar
Botton, Q., Fortz, B., Gouveia, L., Poss, M.: Benders decomposition for the hop-constrained survivable network design problem. INFORMS J. Comput. 25(1), 13–26 (2013)
Article
MathSciNet
Google Scholar
Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1994)
Article
MathSciNet
Google Scholar
Deo, N., Abdalla, A.: Computing a diameter-constrained minimum spanning tree in parallel. In: Bongiovanni, G.C., et al. (eds.) CIAC, volume 1767 of LNCS, pp. 17–31. Springer, Berlin (2000)
Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-constrained minimum-spanning and Steiner trees. Networks 41(3), 159–173 (2003)
Article
MATH
MathSciNet
Google Scholar
Gouveia, L., Magnanti, T.L., Requejo, C.: A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees. Networks 44(4), 254–265 (2004)
Article
MATH
MathSciNet
Google Scholar
Gouveia, L., Magnanti, T.L., Requejo, C.: An intersecting tree model for odd-diameter-constrained minimum spanning and Steiner trees. Ann. OR 146(1), 19–39 (2006)
Article
MATH
MathSciNet
Google Scholar
Gouveia, L., Magnanti, T.L., Requejo, C.: Tight models for special cases of the diameter-constrained minimum spanning tree problem. In: Proceedings of the 3rd International Network Optimization Conference, Spa (2007)
Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Math. Program. 128, 123–148 (2011)
Article
MATH
MathSciNet
Google Scholar
Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Oper. Res. 40(2), 309–330 (1992)
Article
MATH
MathSciNet
Google Scholar
Gruber, M.: Exact and Heuristic Approaches for Solving the Bounded Diameter Minimum Spanning Tree Problem. PhD thesis, Vienna University of Technology, Vienna, Austria (2009)
Gruber, M., Raidl, G.R.: A new 0–1 ILP approach for the bounded diameter minimum spanning tree problem. In: Proceedings of the 2nd International Network Optimization Conference, pp. 178–185, Lisbon (2005)
Gruber, M., Raidl, G.R., et al.: (Meta-)heuristic separation of jump cuts in a branch &cut approach for the bounded diameter minimum spanning tree problem. In: Maniezzo, V. (ed.) Matheuristics, Volume 10 of Annals of Information Systems, pp. 209–230. Springer, Berlin (2010)
Google Scholar
Huygens, D., Labbé, M., Mahjoub, A.R., Pesneau, P.: The two-edge connected hop-constrained network design problem: valid inequalities and branch-and-cut. Networks 49, 116–133 (2007)
Article
MATH
MathSciNet
Google Scholar
Kerivin, H., Mahjoub, A.R.: Design of survivable networks: a survey. Networks 46, 1–21 (2005)
Article
MATH
MathSciNet
Google Scholar
Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. 105, 427–449 (2006)
Article
MATH
MathSciNet
Google Scholar
Mahjoub, A.R., Simonetti, L., Uchoa, E.: Hop-level flow formulation for the survivable network design with hop constraints problem. Networks 61, 171–179 (2013)
Article
MATH
MathSciNet
Google Scholar
Manyem, P., Stallmann, M.F.M.: Some Approximation Results in Multicasting. Technical Report TR-96-03, North Carolina State University at Raleigh, NC, USA (1996)
Noronha, T.F., Ribeiro, C.C., Santos, A.C.: Solving diameter-constrained minimum spanning tree problems by constraint programming. Int. Trans. Oper. Res. 17(5), 653–665 (2010)
Article
MATH
MathSciNet
Google Scholar
Salama, H.F.: Multicast Routing for Real-Time Communication on High-Speed Networks. PhD thesis, Department of Electrical and Computer Engineering, North Carolina State University (1996)
Salama, H.F., Reeves, D.S., Viniotis, Y.: Delay-Constrained Shared Multicast Trees. Technical Report, Department of Electrical and Comp. Engg., North Carolina State Univ., USA (1996)
Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained minimum spanning tree problems in dense graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA, volume 3059 of LNCS, pp. 458–467. Springer, Berlin (2004)
Google Scholar
Vik, K.H., Halvorsen, P., Griwodz, C.: Multicast tree diameter for dynamic distributed interactive applications. In: INFOCOM, pp. 1597–1605. IEEE (2008)