Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms for Feasibility and Optimization and Their Applications, pp. 473–504. Elsevier, Amsterdam (2001)
Chapter
Google Scholar
Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51, 1771–1782 (2003)
Google Scholar
Slavakis, K., Yamada, I.: Robust wideband beamforming by the hybrid steepest descent method. IEEE Trans. Signal Process. 55, 4511–4522 (2007)
Google Scholar
Iiduka, H.: Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation. SIAM J. Optim. 22, 862–878 (2012)
Article
MATH
MathSciNet
Google Scholar
Iiduka, H., Uchida, M.: Fixed point optimization algorithms for network bandwidth allocation problems with compoundable constraints. IEEE Commun. Lett. 15, 596–598 (2011)
Google Scholar
Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Process. 47, 2460–2468 (1999)
Article
MATH
Google Scholar
Yamada, I., Ogura, N., Shirakawa, N.: A numerical robust hybrid steepest descent method for the convexly constrained generalized inverse problems. Contemp. Math. 313, 269–305 (2002)
Article
MathSciNet
Google Scholar
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Springer Series in Operations Research and Financial Engineering, Berlin (1999)
Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28, 1217–1230 (2007)
Article
MATH
MathSciNet
Google Scholar
Narushima, Y., Yabe, H., Ford, J.A.: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21, 212–230 (2011)
Article
MATH
MathSciNet
Google Scholar
Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribiére–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)
Article
MATH
MathSciNet
Google Scholar
Zhang, L., Zhou, W., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104, 561–572 (2006)
Article
MATH
MathSciNet
Google Scholar
Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22, 697–711 (2007)
Article
MathSciNet
Google Scholar
Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping. SIAM J. Optim. 19, 1881–1893 (2009)
Article
MATH
MathSciNet
Google Scholar
Iiduka, H.: Three-term conjugate gradient method for the convex optimization problem over the fixed point set of a nonexpansive mapping. Appl. Math. Comput. 217, 6315–6327 (2011)
Article
MATH
MathSciNet
Google Scholar
Iiduka, H.: Iterative algorithm for solving triple-hierarchical constrained optimization problem. J. Optim. Theory Appl. 148, 580–592 (2011)
Article
MATH
MathSciNet
Google Scholar
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)
Book
MATH
Google Scholar
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
Article
MATH
MathSciNet
Google Scholar
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge Studies in Advanced Mathematics, Cambridge (1990)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
MATH
Google Scholar
Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Japan (2000)
MATH
Google Scholar
Stark, H., Yang, Y.: Vector Space Projections: A Numerical Approach to Signal and Image Processing. Wiley, London (1998)
MATH
Google Scholar
Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)
Article
MATH
MathSciNet
Google Scholar
Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471–489 (2007)
MATH
MathSciNet
Google Scholar
Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics Appl. Math., vol. 28. SIAM, Philadelphia (1999)
Book
Google Scholar
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics Appl. Math., vol. 31. SIAM, Philadelphia (2000)
Book
Google Scholar
Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, Berlin (2000)
Book
Google Scholar
Zeidler, E.: Nonlinear Functional Analysis ans Its Applications III. Variational Methods and Optimization. Springer, Berlin (1985)
Book
Google Scholar
Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)
Article
MATH
MathSciNet
Google Scholar
Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)
Article
MATH
MathSciNet
Google Scholar
Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Kluwer, Dordrecht (1994)
Book
Google Scholar
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)
Article
MATH
MathSciNet
Google Scholar
Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(o(1/k^2)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
MathSciNet
Google Scholar
Iiduka, H.: Fixed point optimization algorithms for distributed optimization in networked systems. SIAM J. Optim. 23, 1–26 (2013)
Article
MATH
MathSciNet
Google Scholar
Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)
Article
MATH
MathSciNet
Google Scholar
Iiduka, H., Yamada, I.: Computational method for solving a stochastic linear-quadratic control problem given an unsolvable stochastic algebraic Riccati equation. SIAM J. Control Optim. 50, 2173–2192 (2012)
Article
MATH
MathSciNet
Google Scholar