Skip to main content

On semidefinite programming relaxations of maximum \(k\)-section

Abstract

We derive a new semidefinite programming bound for the maximum \(k\)-section problem. For \(k=2\) (i.e. for maximum bisection), the new bound is at least as strong as a well-known bound by Poljak and Rendl (SIAM J Optim 5(3):467–487, 1995). For \(k \ge 3\) the new bound dominates a bound of Karisch and Rendl (Topics in semidefinite and interior-point methods, 1998). The new bound is derived from a recent semidefinite programming bound by De Klerk and Sotirov for the more general quadratic assignment problem, but only requires the solution of a much smaller semidefinite program.

This is a preview of subscription content, access via your institution.

References

  1. Ambruster, M.: Branch-and-cut for a semidefinite relaxation of large-scale minimum bisection problem. PhD thesis, Chemnitz University of Technology, Germany (2007)

  2. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. Lecture Notes in Computer Science, vol. 5035/2008, pp. 112–124 (2008)

  3. Andersson, G.: An approximation algorithm for max p-section. In: Meinel, C., Tison, S. (eds.) STACS’99, LNCS, vol. 1563, pp. 237–247 (1999)

  4. De Klerk, E., Sotirov, R.: Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Program. A 133(1), 75–91 (2012)

    Google Scholar 

  5. De Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. 122(2), 225–246 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  6. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41, 174–211 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  7. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX \(k\)-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    MathSciNet  MATH  Article  Google Scholar 

  9. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs and sum of squares. J. Pure Appl. Algebra 192, 95–128 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  10. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite programming for the minimum \(k\)-partition problem. Ann. Oper. Res. 188(1), 155–174 (2011)

    Google Scholar 

  11. Gijswijt, D.: Matrix algebras and semidefinite programming techniques for codes. PhD thesis, University of Amsterdam, The Netherlands (2005)

  12. Graham, A.: Kroneker Products and Matrix Calculus with Applications. Ellis Horwood Limited, Chichester (1981)

    Google Scholar 

  13. Haemers, W.H., Tonchev, V.D.: Spreads in strongly regular graphs. Des. Codes Cryptogr 8(1–2), 145–157 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Halperin, E., Zwick, U.: A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct. Algorithms 20(3), 382–402 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  15. Higman, D.G.: Coherent algebras. Linear Algebra Appl. 93, 209–239 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  16. Higman, D.G., Sims, C.: A simple group of order 44,352,000. Math. Z. 105, 110–113 (1968)

    MathSciNet  MATH  Article  Google Scholar 

  17. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  18. Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In: Pardalos, P.M., Wolkowicz, H. (eds.) Topics in Semidefinite and Interior-Point, Methods fields institure communications, AMS and fields institute (1998)

  19. Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program. 95(1), 91–101 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  20. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5(3), 467–487 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  21. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  22. Schrijver, A.: A comparison of the Delsarte and Lovasz bounds. IEEE Trans. Inf. Theory 25, 425–429 (1979)

    MathSciNet  MATH  Article  Google Scholar 

  23. Schrijver, A.: New code upper bounds from the Terwilliger algebra. IEEE Trans. Inf. Theory 51, 2859–2866 (2005)

    MathSciNet  Article  Google Scholar 

  24. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12, 625–653 (1999)

    MathSciNet  Article  Google Scholar 

  25. Wedderburn, J.H.M.: On hypercomplex numbers. Proc. Lond. Math. Soc. 6(2), 77–118 (1907)

    MathSciNet  Google Scholar 

  26. Ye, Y.: A. 699 approximation algorithm for max-bisection. Math. Program. 90, 101–111 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  27. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discret. Appl. Math. 96–97(1), 461–479 (1999)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Edwin van Dam, Willem Haemers, and René Peters for useful discussions on strongly regular graphs, and for providing several maximum-\(k\)-section instances on these graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne de Klerk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Klerk, E., Pasechnik, D., Sotirov, R. et al. On semidefinite programming relaxations of maximum \(k\)-section. Math. Program. 136, 253–278 (2012). https://doi.org/10.1007/s10107-012-0603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0603-2

Keywords

  • Maximum bisection
  • Maximum section
  • Semidefinite programming
  • Coherent configurations
  • Strongly regular graph

Mathematics Subject Classification (2000)

  • 90C22
  • 20Cxx
  • 70-08