Mathematical Programming

, Volume 134, Issue 1, pp 23–70 | Cite as

Tractable stochastic analysis in high dimensions via robust optimization

Full Length Paper Series B

Abstract

Modern probability theory, whose foundation is based on the axioms set forth by Kolmogorov, is currently the major tool for performance analysis in stochastic systems. While it offers insights in understanding such systems, probability theory, in contrast to optimization, has not been developed with computational tractability as an objective when the dimension increases. Correspondingly, some of its major areas of application remain unsolved when the underlying systems become multidimensional: Queueing networks, auction design in multi-item, multi-bidder auctions, network information theory, pricing multi-dimensional options, among others. We propose a new approach to analyze stochastic systems based on robust optimization. The key idea is to replace the Kolmogorov axioms and the concept of random variables as primitives of probability theory, with uncertainty sets that are derived from some of the asymptotic implications of probability theory like the central limit theorem. In addition, we observe that several desired system properties such as incentive compatibility and individual rationality in auction design are naturally expressed in the language of robust optimization. In this way, the performance analysis questions become highly structured optimization problems (linear, semidefinite, mixed integer) for which there exist efficient, practical algorithms that are capable of solving problems in high dimensions. We demonstrate that the proposed approach achieves computationally tractable methods for (a) analyzing queueing networks, (b) designing multi-item, multi-bidder auctions with budget constraints, and (c) pricing multi-dimensional options.

Keywords

Stochastic analysis Robust optimization Queueing Mechanism design Option pricing 

Mathematics Subject Classification

90-02 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausubel L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ. Rev. 94(5), 1452–1475 (2004)CrossRefGoogle Scholar
  2. 2.
    Bandi, C., Bertsimas, D.: Network information theory via robust optimization. Working Paper (2011)Google Scholar
  3. 3.
    Bandi, C., Bertsimas, D.: Optimal design for multi-item auctions: a robust optimization approach. Working Paper (2012)Google Scholar
  4. 4.
    Bandi, C., Bertsimas, D., Chen, S.: Robust option pricing. Working Paper (2011)Google Scholar
  5. 5.
    Bandi, C., Bertsimas, D., Youssef, N.: Robust multi-class queueing theory. Working Paper (2012)Google Scholar
  6. 6.
    Bandi, C., Bertsimas, D., Youssef, N.: Robust queueing theory. Working Paper (2012)Google Scholar
  7. 7.
    Bandi, C., Bertsimas, D., Youssef, N.: Robust transient queueing theory. Working Paper (2012)Google Scholar
  8. 8.
    Ben-Tal A., El-Ghaoui L., Nemirovski A.: Robust Optimization. Princeton University Press, Princeton (2009)MATHGoogle Scholar
  9. 9.
    Ben-Tal A., Nemirovski A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ben-Tal A., Nemirovski A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ben-Tal A., Nemirovski A.: Robust solutions to uncertain programs. Oper. Res. Lett. 25, 1–13 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ben-Tal A., Nemirovski A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ben-Tal A., Nemirovski A.: On safe tractable approximations of chance-constrained linear matrix inequalities. Math. Oper. Res. 34, 1–25 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Beran, E., Vandenberghe, L., Boyd, S.P.: A global bmi algorithm based on the generalized benders decomposition. In: Proceedings of the European Control Conference, pp. 1074–1082 (1997)Google Scholar
  15. 15.
    Bertsimas D., Brown D., Caramanis C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bertsimas D., Kogan L., Lo A.W.: When is time continuous. J. Financ. Econ. 55, 173–204 (2000)CrossRefGoogle Scholar
  17. 17.
    Bertsimas D., Kogan L., Lo A.W.: Hedging derivative securities and incomplete markets: an \({\epsilon-}\) arbitrage approach. Oper. Res. 49(7), 372–397 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Bertsimas D., Sim M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bertsimas D., Sim M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Birge J.R., Louveaux F.: Introduction to Stochastic Programming. Springer Series in Operations Research, Springer, New York, NY (1997)MATHGoogle Scholar
  21. 21.
    Black F., Scholes M.: Pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)CrossRefGoogle Scholar
  22. 22.
    Borgs, C., Chayes, J.T., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget constrained bidders. In: ACM Conference on Electronic Commerce, pp. 44–51 (2005)Google Scholar
  23. 23.
    Bulow J., Klemperer P.: Auctions versus negotiations. Am. Econ. Rev. 86, 180–194 (1996)Google Scholar
  24. 24.
    Burke P.J.: The output of a queueing system. Oper. Res. 4(6), 699–704 (1956)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: STOC, pp. 311–320 (2010)Google Scholar
  26. 26.
    Che Y., Gale J.: The optimal mechanism for selling to a budget constrained buyer. J. Econ. Theory 92(2), 198–233 (2000)MATHCrossRefGoogle Scholar
  27. 27.
    Cook, S.: The complexity of theorem-proving procedures. In: Conference Record of Third Annual ACM Symposium on Theory of Computing, vol. 1, pp. 151–158 (1971)Google Scholar
  28. 28.
    Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (2006)MATHGoogle Scholar
  29. 29.
    Cremer J., McLean R.P.: Full extraction of the surplus in bayesian and dominant strategy auctions. Econometrica 56(6), 1247–1257 (1988)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Crovella, M.: The relationship between heavy-tailed file sizes and self-similar network traffic. In: INFORMS Applied Probability Conference (1997)Google Scholar
  31. 31.
    Dantzig G.B.: Programming of interdependent activities: II mathematical model. Econometrica 17, 200–211 (1949)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Dantzig G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Dantzig G.B.: Linear Programming and Extensions. Princeton University Press and the RAND Corporation, Princeton (1963)MATHGoogle Scholar
  34. 34.
    Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single sample. In: Proceedings of 12th ACM Conference on Electronic Commerce (2010)Google Scholar
  35. 35.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: FOCS, pp. 260–269 (2008)Google Scholar
  36. 36.
    El-Ghaoui L., Lebret H.: Robust solutions to least-square problems to uncertain data matrices. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    El-Ghaoui L., Oustry F., Lebret H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 33–52 (1998)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Erlang A.K.: The theory of probabilities and telephone conversations. Nyt. Tidsskr. Mat. Ser. B. 20, 33–39 (1909)Google Scholar
  39. 39.
    Gnedenko B.V., Kolmogorov A.N.: Limit Distributions for Sums of Independent Random Variables. Addison Wesley, Reading, MA (1968)Google Scholar
  40. 40.
    Goldberg A., Hartline J., Karlin A., Saks M., Wright A.: Competitive auctions. Games Econ. Behav. 55(2), 242–269 (2006)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Jackson J.R.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957)CrossRefGoogle Scholar
  42. 42.
    Jelenkovic P.R., Lazar A.A., Semret N.: The effect of multiple time scales and subexponentiality in mpeg video streams on queueing behavior. IEEE J. Sel. Areas Commun. 15(6), 1052–1071 (1997)CrossRefGoogle Scholar
  43. 43.
    Karp R.M.: Complexity of Computer Computations, Chapter Reducibility Among Combinatorial Problems, pp. 85–103. Plenum Press, New York, NY (1972)Google Scholar
  44. 44.
    Kingman J.F.C.: Inequalities in the theory of queues. J. R. Stat. Soc. 32, 102–110 (1970)MathSciNetMATHGoogle Scholar
  45. 45.
    Kingman, J.F.C.: 100 years of queueing. In: Proceedings of Conference on The Erlang Centennial, pp. 3–13 (2009)Google Scholar
  46. 46.
    Klemperer P.: Auction theory: a guide to the literature. J. Econ. Surv. 13(3), 227–286 (1999)CrossRefGoogle Scholar
  47. 47.
    Krishna V.: Auction Theory. Academic Press, San Diego (2002)Google Scholar
  48. 48.
    Kuehn P.J.: Approximate analysis of general queueing networks by decomposition. IEEE Trans. Commun. 27, 113–126 (1978)CrossRefGoogle Scholar
  49. 49.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 57–65 (2000)Google Scholar
  50. 50.
    Laffont J.J., Robert J.: Optimal auction with financially constrained buyers. Econ. Lett. 52(2), 181–186 (1996)MATHCrossRefGoogle Scholar
  51. 51.
    Leland W.E., Taqqu M.S., Wilson D.V.: On the self-similar nature of Ethernet traffic. ACM SIGCOMM Comput. Commun. Rev. 25(1), 202–213 (1995)CrossRefGoogle Scholar
  52. 52.
    Lindley, D.V.: The theory of queues with a single server. In: Mathematical Proceedings of the Cambridge Philosophical Society (1952)Google Scholar
  53. 53.
    Malakhov, A., Vohra, R.: Single and multi-dimensional optimal auctions—a network approach. CMS-EMS DP No. 1397, Northwestern University (2004)Google Scholar
  54. 54.
    Manellia A.M., Vincent D.R.: Multidimensional mechanism design: revenue maximization and the multiple-good monopoly. J. Econ. Theory 137(1), 153–185 (2007)CrossRefGoogle Scholar
  55. 55.
    Maskin E.S.: Auctions, development, and privatization: efficient auctions with liquidity constrained buyers. Eur. Econ. Rev. 44, 667–681 (2000)CrossRefGoogle Scholar
  56. 56.
    Merton R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)MATHCrossRefGoogle Scholar
  57. 57.
    Myerson R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Nemirovski A., Shapiro A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic Game Theory. Cambridge University Press, New York, NY, USA (2007)MATHCrossRefGoogle Scholar
  60. 60.
    Nolan J.P.: Numerical calculation of stable densities and distribution functions: heavy tails and highly volatile phenomena, communications in statistics. Stoch. Models. 13, 759–774 (1997)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Pai, M., Vohra, R.: Optimal auctions with financially constrained bidders. Working paper (2008)Google Scholar
  62. 62.
    Papadimitriou, C.H., Pierrakos, G.: On optimal single-item auctions. In: STOC (2011)Google Scholar
  63. 63.
    Ronen, A.: On approximating optimal auctions. In: ACM Conference on Electronic Commerce, pp. 11–17 (2001)Google Scholar
  64. 64.
    Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetMATHGoogle Scholar
  65. 65.
    Sherali H.D., Alameddine A.: A new reformulation linearization technique for bilinear programming problems. J. Global Optim. 2, 379–410 (1992)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Taylor S.J.: Modelling stochastic volatility: a review and comparative study. Math. Finance 4(2), 183–204 (1994)MATHCrossRefGoogle Scholar
  67. 67.
    Thanassoulis J.: Haggling over substitutes. J. Econ. Theory 117(2), 217–245 (2004)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Vickrey W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)Google Scholar
  69. 69.
    Vohra R.: Mechanism Design: A Linear Programming Approach. Cambridge University Press, New York, NY, USA (2011)MATHGoogle Scholar
  70. 70.
    Whitt, W.: The queueuing network analyzer. Bell Syst. Tech. J. 62, 2779–2813 (1983)Google Scholar
  71. 71.
    Willinger, W., Paxson, V., Taqqu, M.S.: Self-similarity and heavy tails: structural modeling of network traffic. A Practical Guide to Heavy Tails: Statistical Techniques and Applications (1998)Google Scholar
  72. 72.
    Wilson R.B.: Nonlinear Pricing. Oxford University Press, Oxford (1997)Google Scholar
  73. 73.
    Yanikoglu, I., den Hertog, D.: Safe approximations of chance constraints using historical data. Technical Report, Tilburg University, Center for Economic Research (2011)Google Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  1. 1.Operations Research CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations