Skip to main content

A polyhedral approach to the single row facility layout problem

Abstract

The single row facility layout problem (SRFLP) is the NP-hard problem of arranging facilities on a line, while minimizing a weighted sum of the distances between facility pairs. In this paper, a detailed polyhedral study of the SRFLP is performed, and several huge classes of valid and facet-inducing inequalities are derived. Some separation heuristics are presented, along with a primal heuristic based on multi-dimensional scaling. Finally, a branch-and-cut algorithm is described and some encouraging computational results are given.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Amaral A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173, 508–518 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Amaral A.R.S.: An exact approach for the one-dimensional facility layout problem. Oper. Res. 56, 1026–1033 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Amaral A.R.S.: A new lower bound for the single row facility layout problem. Discret. Appl. Math. 157, 183–190 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Anjos M.F., Kennings A., Vannelli A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discret. Optim. 2, 113–122 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Anjos M.F., Liers F.: Global approaches for facility layout and VLSI floorplanning. To appear in. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Cone and Polynomial Optimization, Springer, Berlin (2005)

    Google Scholar 

  6. 6

    Anjos M.F., Vannelli A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20, 611–617 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Anjos M.F., Yen G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24, 805–817 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Avis D., Umemoto J.: Stronger linear programming relaxations for max-cut. Math. Program. 97, 451–469 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Caprara A., Letchford A.N., Salazar J.J.: Decorous lower bounds for minimum linear arrangement. INFORMS J. Comput. 23, 26–40 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    de Cani J.S.: A branch and bound algorithm for maximum likelihood paired comparison ranking. Biometrika 59, 131–135 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Conforti M., Cornuéjols G., Zambelli G. et al.: Polyhedral approaches to mixed-integer linear programming. In: Jünger, M. (ed.) 50 Years of Integer Programming: 1958–2008, pp. 343–386. Springer, Berlin (2010)

    Google Scholar 

  12. 12

    Cook W.J.: Fifty-plus years of combinatorial integer programming. In: Jünger, M. et al.(ed.) 50 Years of Integer Programming: 1958–2008, pp. 387–430. Springer, Berlin (2010)

    Google Scholar 

  13. 13

    Datta D., Amaral A.R.S., Figueira J.R.: Single row facility layout problem using a permutation-based genetic algorithm. Eur. J. Oper. Res. 213, 388–394 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Deza M.M., Laurent M.: Geometry of Cuts and Metrics. Springer, New York (1997)

    MATH  Google Scholar 

  15. 15

    Díaz J., Petit J., Serna M.: A survey of graph layout problems. ACM Comput Surv. 34, 313–356 (2002)

    Article  Google Scholar 

  16. 16

    Djellab H., Gourgand M.: A new heuristic procedure for the single-row facility layout problem. Int. J. Comput. Integr. Manuf. 14, 270–280 (2001)

    Article  Google Scholar 

  17. 17

    Garey M.R., Johnson D.S., Stockmeyer L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1988)

    Book  MATH  Google Scholar 

  19. 19

    Heragu S.S., Kusiak A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36, 258–268 (1988)

    Article  Google Scholar 

  20. 20

    Heragu S.S., Kusiak A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53, 1–13 (1991)

    Article  MATH  Google Scholar 

  21. 21

    Hungerländer, P., Rendl, F.: A computational study for the single-row facility layout problem. Technical Report, Alpen-Adria-Universität Klagenfurt (2011)

  22. 22

    Karp R.M., Held M.: Finite-state processes and dynamic programming. SIAM J. Appl. Math. 15, 693–718 (1967)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Laurent M., Poljak S.: Gap inequalities for the cut polytope. SIAM J. Matrix Anal. 17, 530–547 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24

    Liu W., Vannelli A.: Generating lower bounds for the linear arrangement problem. Discret. Appl. Math. 59, 137–151 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Love R.F., Wong J.Y.: On solving a one-dimensional allocation problem with integer programming. INFOR. 14, 139–143 (1976)

    MATH  Google Scholar 

  26. 26

    Nugent C.E., Vollmann T.E., Ruml J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16, 150–173 (1968)

    Article  Google Scholar 

  27. 27

    Picard J.-C., Queyranne M.: On the one-dimensional space allocation problem. Oper. Res. 29, 371–391 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Picard J.-C., Ratliff H.: Minimum cuts and related problems. Networks 5, 357–370 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Simmons D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17, 812–826 (1969)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Simmons D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, 249 (1971)

    MathSciNet  Article  Google Scholar 

  31. 31

    Solimanpur M., Vrat P., Shankar R.: An ant algorithm for the single row layout problem in flexible manufacturing systems. Comput. Oper. Res. 32, 583–598 (2005)

    Article  MATH  Google Scholar 

  32. 32

    Torgerson W.S.: Multidimensional scaling I: theory and method. Psychometrika 17, 401–409 (1952)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam N. Letchford.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amaral, A.R.S., Letchford, A.N. A polyhedral approach to the single row facility layout problem. Math. Program. 141, 453–477 (2013). https://doi.org/10.1007/s10107-012-0533-z

Download citation

Keywords

  • Facility layout
  • Polyhedral combinatorics
  • Branch-and-cut

Mathematics Subject Classification

  • 90C57 (Polyhedral combinatorics, branch-and-bound, branch-and-cut)