Mathematical Programming

, Volume 137, Issue 1–2, pp 131–153 | Cite as

Separating doubly nonnegative and completely positive matrices

Full Length Paper Series A


The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP matrix from the cone of CP matrices. We describe two different constructions for such a separation that apply to 5 × 5 matrices that are DNN but non-CP. We also describe a generalization that applies to larger DNN but non-CP matrices having block structure. Computational results illustrate the applicability of these separation procedures to generate improved bounds on difficult problems.

Mathematics Subject Classification (2000)

90C26 90C22 90C20 15B48 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anstreicher K.M., Burer S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Prog. B 124, 33–43 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Burer S., Anstreicher K.M., Dür M.: The difference between 5 × 5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431, 1539–1552 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Barioli F.: Completely positive matrices with a book-graph. Linear Algebra Appl. 277, 11–31 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bundfuss S., Dür M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20, 30–53 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bomze I.M., Frommlet F., Locatelli M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Prog. B 124, 13–32 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Burer S., Letchford A.N.: On nonconvex quadratic programming with box constriants. SIAM J. Optim. 20, 1073–1089 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bomze I.M., Locatelli M., Tardella F.: New and old bounds for standard quadratic programming: dominance, equivalence and incomparability. Math. Prog. 115, 31–64 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Berman A., Shaked-Monderer N.: Completely Positive Matrices. World Scientific, Singapore (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. 120, 479–495 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Burer S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Prog. Comp. 2, 1–19 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Berman A., Xu C.: 5 × 5 Completely positive matrices. Linear Algebra Appl. 393, 55–71 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dong H., Anstreicher K.: On ‘5 × 5 Completely positive matrices’. Linear Algebra Appl. 433, 1001–1004 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dür M., Still G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)MathSciNetMATHGoogle Scholar
  16. 16.
    Hall M. Jr: Combinatorial Theory. Blaisdell Publishing Company, Waltham (1967)MATHGoogle Scholar
  17. 17.
    Hogben L., Johnson C.R., Reams R.: The copositive completion problem. Linear Algebra Appl. 408, 207–211 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kogan N., Berman A.: Characterization of completely positive graphs. Discret. Math. 114, 297–304 (1993)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Peña J., Vera J., Zuluaga L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18, 87–105 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Väliaho H.: Almost copositive matrices. Linear Algebra Appl. 116, 121–134 (1989)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Yajima Y., Fujie T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computational SciencesUniversity of IowaIowa CityUSA
  2. 2.Department of Management SciencesUniversity of IowaIowa CityUSA

Personalised recommendations