Bakushinsky A., Goncharsky A.: Ill-Posed Problems : Theory and Applications. Kluwer, Dordrecht (1994)
Book
Google Scholar
Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
MathSciNet
MATH
Article
Google Scholar
Bauschke H.H., Borwein J.M., Lewis A.S.: The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 204, 1–38 (1997)
MathSciNet
Article
Google Scholar
Borwein J.M., Lewis A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2000)
MATH
Google Scholar
Combettes P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51, 1771–1782 (2003)
MathSciNet
Article
Google Scholar
Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems I. Springer, New York (2003)
MATH
Google Scholar
Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems II. Springer, New York (2003)
MATH
Google Scholar
Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge Univ. Press, Cambridge (1990)
MATH
Book
Google Scholar
Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York and Basel (1984)
MATH
Google Scholar
Goodman D., Mandayam M.: Power control for wireless data. IEEE Pers. Commun. 7, 48–54 (2000)
Article
Google Scholar
Hansen P.C.: Regularization Tools Version 4.0 for Matlab Version 7.3. Numer. Algorithms 46, 189–194 (2007)
MATH
Article
Google Scholar
Hiriart-Urruty J.B., Lemaréchal C.: Convex Analysis and Minimization Algorithms I. Springer, New York (1993)
Google Scholar
Hirstoaga S.A.: Iterative selection methods for common fixed point problems. J. Math. Anal. Appl. 324, 1020–1035 (2006)
MathSciNet
MATH
Article
Google Scholar
Iiduka H.: Hybrid conjugate gradient method for a convex optimization problem over the fixed-point set of a nonexpansive mapping. J. Optim. Theory Appl. 140, 463–475 (2009)
MathSciNet
MATH
Article
Google Scholar
Iiduka H.: Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem. Nonlinear Anal. 71, 1292–1297 (2009)
MathSciNet
Article
Google Scholar
Iiduka H.: A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping. Optimization 59, 873–885 (2010)
MathSciNet
MATH
Article
Google Scholar
Iiduka H., Yamada I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping. SIAM J. Optim. 19, 1881–1893 (2009)
MathSciNet
MATH
Article
Google Scholar
Iiduka H., Yamada I.: An ergodic algorithm for the power-control games for CDMA data networks. J. Math. Model. Algorithms 8, 1–18 (2009)
MathSciNet
MATH
Article
Google Scholar
Ji H., Huang C.Y.: Non-cooperative uplink power control in cellular radio systems. Wirel. Netw. 4, 233–240 (1998)
Article
Google Scholar
Maingé P.E., Moudafi A.: Strong convergence of an iterative method for hierarchical fixed-point problems. Pac. J. Optim. 3, 529–538 (2007)
MathSciNet
MATH
Google Scholar
Meshkati F., Poor H.V., Schwartz S.C., Mandayam N.B.: An energy-efficient approach to power control and receiver design in wireless data networks. IEEE Trans. Commun. 53, 1885–1894 (2005)
Article
Google Scholar
Moudafi A.: Krasnoselski-Mann iteration for hierarchical fixed-point problems. Inverse Probl. 23, 1635–1640 (2007)
MathSciNet
MATH
Article
Google Scholar
Nash J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)
MathSciNet
MATH
Article
Google Scholar
Nash J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)
MathSciNet
MATH
Article
Google Scholar
Owen G.: Game Theory. W. B. Saunders Company, Philadelphia (1968)
MATH
Google Scholar
Pang J.-S., Fukushima M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005)
MathSciNet
MATH
Article
Google Scholar
Qi L., Sun D.: A survey of some nonsmooth equations and smoothing Newton methods. In: Eberhard, A., Glover, B., Hill, R., Ralph, D. (eds) Progress in Optimization. Appl. Optim., vol. 30, pp. 121–146. Kluwer, Dordrecht (1999)
Google Scholar
Reich S.: Some problems and results in fixed point theory. Contemp. Math. 21, 179–187 (1983)
MATH
Article
Google Scholar
Rodriguez, V.: Robust modeling and analysis for wireless date resource management. In: Proceedings of IEEE Wireless Communication Network Conference, pp. 717–722. New Orleans, LA (March 2003)
Sampath, A.S., Kumar, P.S., Holtzman, J.M.: Power control and resource management for a multimedia CDMA wireless system. In: Proceedings IEEE PIMRC ’95 (1995)
Saraydar C.U., Mandayam N.B., Goodman D.J.: Efficient power control via pricing in wireless data networks. IEEE Trans. Commun. 50, 291–303 (2002)
Article
Google Scholar
Slavakis K., Yamada I., Sakaniwa K.: Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method. Signal Process. 83, 1135–1140 (2003)
MATH
Article
Google Scholar
Slavakis K., Yamada I.: Robust wideband beamforming by the hybrid steepest descent method. IEEE Trans. Signal Process. 55, 4511–4522 (2007)
MathSciNet
Article
Google Scholar
Solodov M.V., Svaiter B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)
MathSciNet
MATH
Article
Google Scholar
Stark H., Yang Y.: Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. Wiley, London (1998)
MATH
Google Scholar
Sung C.W., Wong W.S.: Power control and rate management for wireless multimedia CDMA systems. IEEE Trans. Commun. 49, 1215–1226 (2001)
MATH
Article
Google Scholar
Sung C.W., Wong W.S.: A noncooperative power control game for multirate CDMA data networks. IEEE Trans. Wirel. Commun. 2, 186–194 (2003)
Article
Google Scholar
Takahashi W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
MATH
Google Scholar
Tse D.N.C., Hanly S.V.: Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Trans. Inf. Theory 45, 641–657 (1999)
MathSciNet
MATH
Article
Google Scholar
Wolfe P.: Finding the nearest point in a polytope. Math. Program 11, 128–149 (1976)
MathSciNet
MATH
Article
Google Scholar
Yamada I. : The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds) Inherently Parallel Algorithms for Feasibility and Optimization and Their Applications, pp. 473–504. Elsevier, New York (2001)
Chapter
Google Scholar
Yamada I., Ogura N., Shirakawa N.: A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems. Contemp. Math. 313, 269–305 (2002)
MathSciNet
Article
Google Scholar