Mathematical Programming

, Volume 127, Issue 1, pp 89–122 | Cite as

Verifiable conditions of 1-recovery for sparse signals with sign restrictions

  • Anatoli Juditsky
  • Fatma Kılınç Karzan
  • Arkadi Nemirovski
Full Length Paper Series B

Abstract

We propose necessary and sufficient conditions for a sensing matrix to be “s-semigood” – to allow for exact 1-recovery of sparse signals with at most s nonzero entries under sign restrictions on part of the entries. We express error bounds for imperfect 1-recovery in terms of the characteristics underlying these conditions. These characteristics, although difficult to evaluate, lead to verifiable sufficient conditions for exact sparse 1-recovery and thus efficiently computable upper bounds on those s for which a given sensing matrix is s-semigood. We examine the properties of proposed verifiable sufficient conditions, describe their limits of performance and provide numerical examples comparing them with other verifiable conditions from the literature.

Mathematics Subject Classification (2000)

90C90 90C05 90C22 62J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, E.D., Andersen, K.D.: The MOSEK optimization tools manual. http://www.mosek.com/fileadmin/products/6_0/tools/doc/pdf/tools.pdf
  2. 2.
    Bruckstein A., Donoho D., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bruckstein A., Elad M., Zibulevsky M.: A non-negative and sparse enough solution of an underdetermined linear system of equations is unique. IEEE Trans. Inf. Theory 54(11), 4813–4820 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Candes, E.J.: Compressive sampling, In: Sanz-solé, M, Soria, J, Varona, J.L., Verdera, J.(eds.) International Congress of Mathematicians, Madrid 2006, vol. III, pp. 1437–1452. European Mathematical Society Publishing House (2006)Google Scholar
  5. 5.
    Carathéodory C.: Ueber den variabilitaetsbereich der fourierschen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)MATHCrossRefGoogle Scholar
  6. 6.
    Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. http://www.math.sc.edu/devore/publications/CDDSensing6.pdf. submitted for publication (2006)
  7. 7.
    d’Aspremont, A., El Ghaoui, L.: Testing the nullspace property using semidefinite programming. http://arxiv.org/abs/0807.3520. Math. Program. (2008, to appear)
  8. 8.
    Donoho D., Elad M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Donoho D., Huo X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Donoho D., Tanner J.: Sparse nonnegative solutions of underdetermined linear equations by Linear Programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Donoho D., Tanner J.: Neighborliness of randomly-projected simplices in high dimensions. Proc. Natl. Acad. Sci. 102(27), 9452–9457 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Donoho D., Elad M., Temlyakov V.: On Lebesgue-type inequalities for Greedy Approximation. J. Approx. Theory 147(2), 185–195 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elad M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Juditsky, A., Nemirovski, A.: On verifiable sufficient conditions for sparse signal recovery via 1 minimization. Math. Program. http://hal.archives-ouvertes.fr/hal-00321775/. (2008, submitted)
  15. 15.
    Juditsky, A., Kılınç Karzan, F., Nemirovski, A.: Verifiable conditions of 1 recovery for sparse signals with sign restrictions. http://www.optimization-online.org/DB_HTML/2009/03/2272.html (2009)
  16. 16.
    Mallat S., Zhang A.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)MATHCrossRefGoogle Scholar
  17. 17.
    Zhang, Y.: A simple proof for recoverability of ell-1-minimization: go over or under? Technical Report TR05-09, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2005)Google Scholar
  18. 18.
    Zhang, Y.: A simple proof for recoverability of ell-1-minimization (II): the nonnegative case. Technical report TR05-10, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2005)Google Scholar
  19. 19.
    Zhang Y.: Theory of compressive sensing via l1 minimization: a non-rip analysis and extensions. Technical report TR08-11, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2008)Google Scholar

Copyright information

© Springer and Mathematical Optimization Society 2010

Authors and Affiliations

  • Anatoli Juditsky
    • 1
  • Fatma Kılınç Karzan
    • 2
  • Arkadi Nemirovski
    • 2
  1. 1.LJK, Université J. FourierGrenoble Cedex 9France
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations