Skip to main content
Log in

Minmax-distance approximation and separation problems: geometrical properties

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A center hyperplane in the d-dimensional space minimizes the maximum of its distances from a finite set of points A with respect to possibly different gauges. In this note it is shown that a center hyperplane exists which is at (equal) maximum distance from at least d + 1 points of A. Moreover the projections of the points among these which lie above the center hyperplane cannot be separated by another hyperplane from the projections of those that are below it. When all gauges involved are smooth, all center hyperplanes satisfy these properties. This geometric property allows us to improve and generalize previously existing results, which were only known for the case in which all distances are measured using a common norm. The results also extend to the constrained case where for some points it is prespecified on which side of the hyperplane (above, below or on) they must lie. In this case the number of points lying on the hyperplane plus those at maximum distance is at least d + 1. It follows that solving such global optimization problems reduces to inspecting a finite set of candidate solutions. Extensions of these results to a separation problem are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett K.P., Mangasarian O.L.: Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1, 23–34 (1992)

    Article  Google Scholar 

  2. Blanquero R., Carrizosa E., Hansen P.: Locating objects in the plane using Global Optimization techniques. Math. Oper. Res. 34, 837–858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brimberg J., Juel J., Schöbel A.: Linear facility location in three dimensions—models and solution methods. Oper. Res. 50, 1050–1057 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brimberg J., Juel J., Schöbel A.: Locating a minisum circle in the plane. Discrete Appl. Math. 157, 901–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burges C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  6. Carrizosa E., Plastria F.: Optimal expected-distance separating halfspace. Math. Oper. Res. 33, 662–677 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cera M., Mesa J.A., Ortega F.A., Plastria F.: Locating a central hunter on the plane. J. Optim. Theory Appl. 136, 155–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaudhuri P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91, 862–872 (1996)

    Article  MATH  Google Scholar 

  9. Cortes C., Vapnik V.: Support vector networks. Mach. learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  10. Díaz-Báñez J.M., López M.A., Sellarès J.A.: Locating an obnoxious plane. Eur. J. Oper. Res. 173, 556–564 (2006)

    Article  MATH  Google Scholar 

  11. Díaz-Báñez J.M., Mesa J.A., Schöbel A.: Continuous location of dimensional structures. Eur. J. Oper. Res. 152, 22–44 (2004)

    Article  MATH  Google Scholar 

  12. Drezner Z., Steiner G., Wesolowsky G.O.: On the circle closest to a set of points. Comput. Oper. Res. 29, 637–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durier R., Michelot C.: Geometrical properties of the Fermat–Weber problem. Eur. J. Oper. Res. 20, 332–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Houle M.E., Imai H., Imai K., Robert J.M.: Weighted orthogonal L -approximation and applications. Lect. Notes Comput. Sci. 382, 183–191 (1989)

    Article  MathSciNet  Google Scholar 

  15. Houle M.E., Imai H., Imai K., Robert J.M., Yamamoto P.: Orthogonal weighted linear L 1 and L approximation and applications. Discrete Appl. Math. 43, 217–232 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Houle, M.E., Toussaint, G.: Computing the width of a set. In: Proceedings of the 1st ACM Symposium of Computational Geometry, pp. 1–7 (1985)

  17. Imai H., Lee D.T., Yang C.D.: 1-segment center problems. ORSA J. Comput. 4, 426–434 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korneenko N.M., Martini H.: Approximating finite weighted point sets by hyperplanes. Lect. Notes Comput. Sci. 447, 276–286 (1990)

    Article  MathSciNet  Google Scholar 

  19. Korneenko N.M., Martini H.: Hyperplane approximation and related topics. In: Pach, J. (eds) New trends in discrete and computational geometry, pp. 135–162. Springer, Berlin (1993)

    Chapter  Google Scholar 

  20. Lee D.T., Wu Y.F.: Geometric complexity of some location problems. Algorithmica 1, 193–211 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mangasarian O.L.: Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13, 444–452 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mangasarian O.L.: Arbitrary-norm separating plane. Oper. Res. Lett. 24, 15–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martini H., Schöbel A.: Two characterizations of smooth norms. Geometriae Dedicata 77, 173–183 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martini H., Schöbel A.: Median and center hyperplanes in Minkowski spaces—a unified approach. Discrete Math. 241, 407–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Megiddo N., Tamir A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1, 194–197 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Michelot C.: The mathematics of continuous location. Stud. Locat. Anal. 5, 59–83 (1993)

    Google Scholar 

  27. Morris J.G., Norback J.P.: Linear facility location, Solving extensions of the basic problem. Eur. J. Oper. Res. 12, 90–94 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nilsson N.: Learning machines: foundations of trainable pattern classifying systems. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  29. Norback J.P., Morris J.G.: Fitting hyperplanes by minimizing orthogonal deviations. Math. Program. 19, 102–105 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plastria F.: On destination optimality in asymmetric distance Fermat–Weber problems. Ann. Oper. Res. 40, 355–369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Plastria F.: Continuous location problems: research, results and questions. In: Drezner, Z. (eds) Facility location: a survey of applications and methods, pp. 85–127. Springer, Berlin (1995)

    Google Scholar 

  32. Plastria F., Carrizosa E.: Gauge-distances and median hyperplanes. J. Optim. Theory Appl. 110, 173–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Plastria, F., Carrizosa, E.: Optimal distance separating halfspace. Working Paper: Report BEIF/124, Vrije Universiteit Brussel, 2002. http://www.optimization-online.org/DB_FILE/2004/10/970.pdf (2002)

  34. Plastria F., De Bruyne S., Carrizosa E.: Alternating local search based VNS for linear classification. Ann. Oper. Res. 174, 121–134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosenblatt F.: Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books, New York (1962)

    MATH  Google Scholar 

  36. Schöbel A.: Locating lines and hyperplanes. Kluwer Academic Press, Dordrecht (1998)

    Google Scholar 

  37. Schöbel A.: Locating least-distant lines in the plane. Eur. J. Oper. Res. 106, 152–159 (1998)

    Article  Google Scholar 

  38. Schöbel A.: Anchored hyperplane location problems. Discrete Computat. Geom. 29, 229–238 (2003)

    MATH  Google Scholar 

  39. Still G., Streng M.: The Chebyshev hyperplane optimization problem. J. Global Optim. 11, 361–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vapnik V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  41. Wesolowsky G.O.: Location of the median line for weighted points. Environ. Plan. A 7, 163–170 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Plastria.

Additional information

The research of the second author is partially supported by grants MTM2008-3032, Spain, and FQM-329 of Junta de Andalucía, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plastria, F., Carrizosa, E. Minmax-distance approximation and separation problems: geometrical properties. Math. Program. 132, 153–177 (2012). https://doi.org/10.1007/s10107-010-0387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0387-1

Keywords

Mathematics Subject Classification (2000)

Navigation