Mathematical Programming

, Volume 131, Issue 1–2, pp 333–364 | Cite as

Design of price mechanisms for network resource allocation via price of anarchy

Open Access
Full Length Paper Series A


We study the design of price mechanisms for communication network problems in which a user’s utility depends on the amount of flow she sends through the network, and the congestion on each link depends on the total traffic flows over it. The price mechanisms are characterized by a set of axioms that have been adopted in the cost-sharing games, and we search for the price mechanisms that provide the minimum price of anarchy. We show that, given the non-decreasing and concave utilities of users and the convex quadratic congestion costs in each link, if the price mechanism cannot depend on utility functions, the best achievable price of anarchy is \({{4(3-2 \sqrt{2}) \approx 31.4 \% }}\). Thus, the popular marginal cost pricing with price of anarchy less than 1/3 ≈ 33.3% is nearly optimal. We also investigate the scenario in which the price mechanisms can be made contingent on the users’ preference profile while such information is available.

Mathematics Subject Classification (2000)



  1. 1.
    Athey S.: Single crossing properties and the existence of pure strategy equilibria in games of incomplete information. Econometrica 69(4), 861–889 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: The Annual ACM Symposium on Theory of Computing (STOC), pp. 57–66 (2005)Google Scholar
  3. 3.
    Billera L., Heath D.: Allocation of shared costs: a set of axioms yielding a unique procedure. Math. Oper. Res. 7, 32–39 (1982)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brown S.J., Sibley D.S.: The Theory of Public Utility Pricing. Cambridge University Press, Cambridge (1986)Google Scholar
  5. 5.
    Cachon G., Lariviere M.: Capacity choice and allocation: strategic behavior and supply chain performance. Manage. Sci. 45, 1091–1108 (1999)CrossRefGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: The Annual ACM Symposium on Theory of Computing (STOC), pp. 67–73 (2005)Google Scholar
  7. 7.
    Friedman E., Moulin H.: Three methods to share joint costs or surplus. J. Econ. Theory 87, 275–312 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fudenberg D., Tirole J.: Game Theory. The MIT Press, Cambridge (1994)Google Scholar
  9. 9.
    Hamilton J., Slutsky S.: Nonlinear price discrimination with a finite number of consumers and constrained recontracting. Int. J. Ind. Organ. 22(6), 737–757 (2004)CrossRefGoogle Scholar
  10. 10.
    Johari R., Tsitsiklis J.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29, 407–435 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Johari R., Tsitsiklis J.: A scalable network resource allocation mechanism with bounded efficiency loss. IEEE J. Sel. Areas Commun. 24, 992–999 (2006)CrossRefGoogle Scholar
  12. 12.
    Kelly F., Maulloo A., Tan D.: Rate control for communication networks: shadow prices, proportional fairness, and stability. J. Oper. Res. Soc. 49, 237–252 (1998)MATHGoogle Scholar
  13. 13.
    Kolpin V.: Multi-product serial cost sharing: an incompatibility with the additivity axiom. J. Econ. Theory 69(1), 227–233 (1996)MATHCrossRefGoogle Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of 16th Symposium on Theoretical Aspects of Computer Science, LNCS 1563, 404–413 (1999)Google Scholar
  15. 15.
    Krishna V.: Auction Theory. Academic Press, New York (2002)Google Scholar
  16. 16.
    Laffont J., Martimort D.: The Theory of Incentives: The Principal-Agent Model. Princeton University Press, USA (2002)Google Scholar
  17. 17.
    Maskin E.: Nash equilibria and welfare optimality. Rev. Econ. Stud. 66, 23–38 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mirman L., Tauman Y.: Demand compatible equitable cost sharing prices. Math. Oper. Res. 7, 40–56 (1982)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Monderer D., Neyman A.: Values of Smooth Nonatomic Games: The Method of Multilinear approximation. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge Univ. Press, New York (1988)Google Scholar
  20. 20.
    Moulin H.: The price of anarchy of serial, average and incremental cost sharing. Econ. Theory 36, 379–405 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Moulin H., Shenker S.: Serial cost sharing. Econometrica 60, 1009–1037 (1992)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Moulin H., Shenker S.: Average cost pricing versus serial cost sharing: an axiomatic comparison. J. Econ. Theory 64, 178–201 (1994)MATHCrossRefGoogle Scholar
  23. 23.
    Nisan N., Roughgarden T., Tardos E., Vazirani V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)MATHCrossRefGoogle Scholar
  24. 24.
    Parry I.: Comparing the efficiency of alternative policies for reducing traffic congestion. J. Public Econ. 85, 333–362 (2002)CrossRefGoogle Scholar
  25. 25.
    Piketty T.: Implementation of first-best allocations via generalized tax schedules. J. Econ. Theory 61(1), 23–41 (1993)MATHCrossRefGoogle Scholar
  26. 26.
    Roughgarden T., Tardos E.: How bad is selfish routing? J. ACM 49, 236–259 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Roughgarden T., Tardos E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ. Behav. 47, 389–403 (2004)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Samet D., Tauman Y.: The determination of marginal cost prices under a set of axioms. Econometrica 50, 895–909 (1982)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Sheshinski E.: On atmosphere externality and corrective. J. Public Econ. 88, 727–734 (2004)CrossRefGoogle Scholar
  30. 30.
    Sudholter P.: Axiomatizations of game theoretical solutions for one-output cost sharing problems. Games Econ. Behav. 24, 142–171 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tadenuma K., Thomson W.: No-envy and consistency in economies with indivisible goods. Econometrica 59(6), 1755–1767 (1991)MATHCrossRefGoogle Scholar
  32. 32.
    Tauman Y.: The aumann-shapley prices: a survey. In: Roth, A. (eds) The Shapley Value: In Honor of Lioyd Shapley, Cambridge University Press, Cambridge (1988)Google Scholar
  33. 33.
    Watts A.: On the uniqueness of equilibrium in Cournot oligopoly and other games. Games Econ. Behav. 13, 269–285 (1996)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Yang, S., Hajek, B.: Revenue and stability of a mechanism for efficient allocation of a divisible good. Working paper, University of Illinois at Urbana-Champaign (2006)Google Scholar
  35. 35.
    Young H.: Cost allocation. In: Aumann, R., Hart, S. (eds) Handbook of Game Theory with Economic Applications, vol. 2, pp. 1193–1235. Elsevier, Netherlands (1988)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Operations ResearchUniversity of CaliforniaBerkeleyUSA
  2. 2.Stern School of BusinessNew York UniversityNew YorkUSA

Personalised recommendations