Skip to main content
Log in

Representing simple d-dimensional polytopes by d polynomials

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A polynomial representation of a convex d-polytope P is a finite set {p 1(x), . . . , p n (x)} of polynomials over \({\mathbb {R}^d}\) such that \({P=\{x \in \mathbb {R}^d : p_i(x) \ge 0 \mbox{ for every }1 \le i \le n\}}\). Let s(d, P) be the least possible n as above. It is conjectured that s(d, P) = d for all convex d-polytopes P. We confirm this conjecture for simple d-polytopes by providing an explicit construction of d polynomials that represent a given simple d-polytope P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andradas C., Bröcker L., Ruiz J.M.: Constructible sets in real geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 33. Springer, Berlin (1996) MR 98e:14056

    Google Scholar 

  2. Averkov, G., Henk, M.: Three-dimensional polyhedra can be described by three polynomial inequalities, 23 pp. arXiv:0807.2137 (2008)

  3. Averkov, G.: Representing elementary semi-algebraic sets by a few polynomial inequalities: a constructive approach, 14 pp. arXiv:0804.2134 (2008)

  4. Bădescu L.: Algebraic surfaces, Universitext. Springer, New York (2001). MR 2001k:14068

    Google Scholar 

  5. Bochnak J., Coste M., Roy M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol 36. Springer, Berlin (1998) MR 2000a:14067

    Google Scholar 

  6. Bernig, A.: Constructions for the theorem of Bröcker and Scheiderer, 48 pp. Diploma thesis, Universities Rennes and Dortmund (1998)

  7. Bosse H., Grötschel M., Henk M.: Polynomial inequalities representing polyhedra. Math. Program. 103(1A), 35–44 (2005) MR 2006k:52018

    Article  MATH  MathSciNet  Google Scholar 

  8. Burési J., Mahé L.: Reducing inequalities with bounds. Math. Z. 227(2), 231–243 (1998) MR 98j:14073

    Article  MATH  MathSciNet  Google Scholar 

  9. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006). MR 2007b:14125

  10. Bröcker L.: Minimale Erzeugung von Positivbereichen, Geom. Dedicata 16(3), 335–350 (1984) MR 86c:11024

    MATH  MathSciNet  Google Scholar 

  11. Bröcker L.: On basic semialgebraic sets. Exposition. Math. 9(4), 289–334 (1991) MR 93b:14085

    MATH  MathSciNet  Google Scholar 

  12. Bröcker, L.: Private communication (2008)

  13. Barvinok, A.I., Vershik, A.M.: Polynomially computable approximation of families of semi-algebraic sets, and combinatorial complexity. Trudy Leningrad. Mat. Obshch. 1, 8–26, 245 (1990). MR 92f:14065

  14. Barvinok A., Veomett A.: The computational complexity of convex bodies. Surv. Discrete Comput. Geom. Contemp. Math. 453, 117–137 (2008)

    MathSciNet  Google Scholar 

  15. Firey W.J.: Approximating convex bodies by algebraic ones. Arch. Math. (Basel) 25, 424–425 (1974) MR 50 #5632

    MATH  MathSciNet  Google Scholar 

  16. Grötschel M., Henk M.: The representation of polyhedra by polynomial inequalities. Discrete Comput. Geom. 29(4), 485–504 (2003) MR 2004b:14098

    MATH  MathSciNet  Google Scholar 

  17. Greuel G.-M., Pfister G.: A singular Introduction to Commutative Algebra. Springer, Berlin (2002) MR 2003k:13001

    MATH  Google Scholar 

  18. Hammer P.C.: Approximation of convex surfaces by algebraic surfaces. Mathematika 10, 64–71 (1963) MR 27 #4135

    Article  MATH  MathSciNet  Google Scholar 

  19. Handelman D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132(1), 35–62 (1988) MR 90e:52005

    MATH  MathSciNet  Google Scholar 

  20. Henk M.: Polynomdarstellungen von Polyedern. Jber. Deutsch. Math.-Verein. 109(2), 51–69 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988, Reprint of the 1952 edition. MR 89d:26016

  22. Lancaster P.: Theory of matrices. Academic Press, New York (1969) MR 39 #6885

    MATH  Google Scholar 

  23. Mahé L.: Une démonstration élémentaire du théorème de Bröcker-Scheiderer. C. R. Acad. Sci. Paris Sér. I Math. 309(9), 613–616 (1989) MR 91h:14057

    MATH  Google Scholar 

  24. Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164(1–2), 221–229 (2001). Effective methods in algebraic geometry (Bath, 2000). MR 2002g:14087

    Google Scholar 

  25. Scheiderer C.: Stability index of real varieties. Invent. Math. 97(3), 467–483 (1989) MR 90g:14011

    Article  MATH  MathSciNet  Google Scholar 

  26. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993) MR 94d:52007

    Google Scholar 

  27. vom Hofe, G.: Beschreibung von ebenen konvexen n-Ecken durch höchstens drei algebraische Uungleichungen, PhD thesis, University of Dortmund, (1992)

  28. Zariski O.: Algebraic surfaces, Classics in Mathematics. Springer, Berlin (1995) MR 96c:14024

    Google Scholar 

  29. Zhan X.: Matrix Inequalities, Lecture Notes in Mathematics, vol. 1790. Springer, Berlin (2002) MR 2003h:15030

    Google Scholar 

  30. Ziegler G.M.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995) MR 96a:52011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadiy Averkov.

Additional information

The work of the authors was supported by the Research Unit 468 “Methods from Discrete Mathematics for the Synthesis and Control of Chemical Processes” funded by the German Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averkov, G., Henk, M. Representing simple d-dimensional polytopes by d polynomials. Math. Program. 126, 203–230 (2011). https://doi.org/10.1007/s10107-009-0280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0280-y

Keywords

Mathematics Subject Classification (2000)

Navigation