Skip to main content
Log in

Multi-phase dynamic constraint aggregation for set partitioning type problems

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Dynamic constraint aggregation is an iterative method that was recently introduced to speed up the linear relaxation solution process of set partitioning type problems. This speed up is mostly due to the use, at each iteration, of an aggregated problem defined by aggregating disjoint subsets of constraints from the set partitioning model. This aggregation is updated when needed to ensure the exactness of the overall approach. In this paper, we propose a new version of this method, called the multi-phase dynamic constraint aggregation method, which essentially adds to the original method a partial pricing strategy that involves multiple phases. This strategy helps keeping the size of the aggregated problem as small as possible, yielding a faster average computation time per iteration and fewer iterations. We also establish theoretical results that provide some insights explaining the success of the proposed method. Tests on the linear relaxation of simultaneous bus and driver scheduling problems involving up to 2,000 set partitioning constraints show that the partial pricing strategy speeds up the original method by an average factor of 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balinski M.L., Gomory R.E.: A mutual primal-dual simplex method. In: Graves, R.L., Wolfe, P. (eds) Recent Advances in Mathematical Programming., pp. 17–28. McGraw-Hill, New York (1963)

    Google Scholar 

  2. Balinski M.L., Quandt R.E.: On an integer program for a delivery problem. Oper. Res. 12, 300–304 (1964)

    Article  Google Scholar 

  3. Bland R.G.: New finite pivoting rule for simplex method. Math. Oper. Res. 2, 103–107 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Charnes A.: Optimality and degeneracy in linear programming. Econometrica 20, 160–170 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cordeau J.-F., Desaulniers G., Lingaya N., Soumis F., Desrosiers J.: Simultaneous locomotive and car assignment at VIA Rail Canada. Transp. Res. B 35, 767–787 (2001)

    Article  Google Scholar 

  6. Dantzig G.B., Orden G.B., Wolfe P.: The generalized simplex method for minimizing a linear form under linear inequality restraints. Pac. J. Math. 5, 183–195 (1955)

    MATH  MathSciNet  Google Scholar 

  7. Desrochers M., Desrosiers J., Soumis F.: A new optimization algorithm for the vehicle routing problem with time Windows. Oper. Res. 40, 342–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desrochers M., Soumis F.: A generalized permanent labeling algorithm for the shortest path problem with time Windows. INFOR 26, 191–212 (1988)

    MATH  Google Scholar 

  9. Desrochers M., Soumis F.: A column generation approach to the urban transit crew scheduling problem. Transp. Sci. 23, 1–13 (1989)

    Article  MATH  Google Scholar 

  10. Elhallaoui I., Villeneuve D., Soumis F., Desaulniers G.: Dynamic aggregation of set partitioning constraints in column generation. Oper. Res. 53, 632–645 (2005)

    Article  MATH  Google Scholar 

  11. Fletcher R.: A new degeneracy method and steepest-edge-based conditioning for LP. SIAM J. Optim. 8, 1038–1059 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gal, T., (ed.): Degeneracy in optimization problems. Ann. Oper. Res. 46/47, 1–7 (1993)

    Article  MathSciNet  Google Scholar 

  13. Gamache M., Soumis F., Marquis G., Desrosiers J.: A column generation approach for large scale aircrew rostering problems. Oper. Res. 47, 247–263 (1999)

    Article  MATH  Google Scholar 

  14. Geoffrion A.M.: Lagrangean relaxation for integer programming. Math. Program. Study 2, 82–114 (1974)

    MathSciNet  Google Scholar 

  15. Glover F.: Surrogate constraints. Oper. Res. 16, 741–749 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldfarb D., Reid J.K.: A practicable steepest-edge simplex algorithm. Math. Program. 12, 361–371 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haase K., Desaulniers G., Desrosiers J.: Simultaneous vehicle and crew scheduling in urban mass transit systems. Transp. Sci. 35, 286–303 (2001)

    Article  MATH  Google Scholar 

  18. Harris P.M.: Pivot selection methods of the devex LP code. Math. Program. 5, 1–28 (1973)

    Article  MATH  Google Scholar 

  19. Hoffman K.L., Padberg M.: Solving ariline crew scheduling problems by branch-and-cut. Manage. Sci. 39, 657–682 (1993)

    Article  MATH  Google Scholar 

  20. Irnich S., Desaulniers G.: Shortest path problems with resource constraints. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation., pp. 33–65. Springer, New York (2005)

    Chapter  Google Scholar 

  21. Mendelssohn R.: An iterative aggregation procedure for Markov decision process. Oper. Res. 30, 62–73 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pan P.-Q.: A basis deficiency-allowing variation of the simplex method for linear programming. Comput. Math. Appl. 36(3), 33–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rogers D.F., Plante R.D., Wong R.T., Evans J.R.: Aggregation and disaggregation techniques and methodology in optimization. Oper. Res. 39, 553–582 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ryan D.M., et Osborne M.: On the solution of highly degenerate linear programmes. Math. Program. 41, 385–392 (1988)

    Article  MATH  Google Scholar 

  25. Shetty C.M., Taylor R.W.: Solving large-scale linear programs by aggregation. Comput. Oper. Res. 14, 385–393 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Terlaky T., Sushong Z.: Pivot rules for linear programming: a survey on recent theoretical developments. Ann. Oper. Res. 46, 203–233 (1993)

    Article  MathSciNet  Google Scholar 

  27. Villeneuve D.: Logiciel de Génération de Colonnes, Ph.D. Dissertation. Université de Montréal, Canada (1999)

    Google Scholar 

  28. Wolfe P.: A technique for resolving degeneracy in LP. SIAM J. 2, 205–211 (1963)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Desaulniers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elhallaoui, I., Metrane, A., Soumis, F. et al. Multi-phase dynamic constraint aggregation for set partitioning type problems. Math. Program. 123, 345–370 (2010). https://doi.org/10.1007/s10107-008-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0254-5

Keywords

Mathematics Subject Classification (2000)

Navigation