Skip to main content
Log in

Lattice based extended formulations for integer linear equality systems

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study different extended formulations for the set \({X = \{{\boldsymbol x}\in \mathbb{Z}^n \mid {\boldsymbol A}{\boldsymbol x} = {\boldsymbol A}{\boldsymbol x}^0\}}\) with \({{\boldsymbol A} \in \mathbb{Z}^{m \times n}}\) in order to tackle the feasibility problem for the set \({X \cap \mathbb{Z}^n_+.}\) Pursuing the work of Aardal, Lenstra et al. using the reformulation \({X=\{{\boldsymbol x} \in \mathbb{Z}^n \mid {\boldsymbol x}-{\boldsymbol x}^0={\boldsymbol Q}{\boldsymbol \lambda},\,{\boldsymbol \lambda} \in \mathbb{Z}^{n-m}\}}\) , our aim is to derive reformulations of the form \({\{{\boldsymbol x} \in \mathbb{Z}^n \mid {\boldsymbol P}({\boldsymbol x}-{\boldsymbol x}^0)={\boldsymbol T} {\boldsymbol \mu}, {\boldsymbol \mu} \in \mathbb{Z}^s\}}\) with 0  ≤  sn − m where preferably all the coefficients of P are small compared to the coefficients of A and T. In such cases the new variables μ appear to be good branching directions, and in certain circumstances permit one to deduce rapidly that the instance is infeasible. We give a polynomial time algorithm for identifying such PT if possible, and for the case that A has one row a we analyze the reformulation when s = 1, that is, one μ-variable is introduced. In particular, we determine the integer width of the extended formulations in the direction of the μ-variable, and derive a lower bound on the Frobenius number of a. We conclude with some preliminary tests to see if the reformulations are effective when the number s of additional constraints and variables is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aardal K., Bixby R.E., Hurkens C.A.J., Lenstra A.K., Smeltink J.W.: Market split and basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS J. Comput. 12, 192–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aardal K., Hurkens C.A.J., Lenstra A.K.: Solving a system of diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25, 427–442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aardal, K., Lenstra, A.K.: Hard equality constrained integer knapsacks. Mathematics of Operations Research, 29(3), 724–738 (2004). Erratum: Mathematics of Operations Research, 31(4), p. 846 (2006)

  4. Andersen, K., Pochet, Y.: Coefficient strengthening: a tool for formulating mixed integer programs. CORE DP 2007/24, Université catholique de Louvain (2007)

  5. Bradley G.H.: Transformation of integer programs to knapsack problems. Discrete Math. 1, 29–45 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bradley G.H.: Equivalent integer programs and canonical problems. Manage. Sci. 17, 354–366 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bradley G.H., Hammer P.L., Wolsey L.A.: Coefficient reduction for inequalities in 0-1 variables. Math. Program. 7, 263–282 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Berlin (1997). Second Printing, Corrected, Reprint of the 1971 ed.

  9. Cornuéjols G., Dawande M.: A class of hard small 0-1 programs. INFORMS J. Comput. 11, 205–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cornuéjols G., Urbaniak R., Weismantel R., Wolsey L.A.: Decomposition of integer programs and of generating sets. In: Burkard, R.E., Woeginger, G.J.(eds) Algorithms–ESA ’97. Lecture Notes in Computer Science, vol. 1284, pp. 92–103. Springer, Berlin (1997)

    Google Scholar 

  11. Kannan R.: Algorithmic geometry of numbers. Annu. Rev. Comput. Sci. 2, 231–267 (1987)

    Article  MathSciNet  Google Scholar 

  12. Kannan R., Bachem A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8, 499–507 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Working paper, Tepper School of Business, Carnegie Mellon University (2005). Revised September 2007. To appear in: Chvátal, V., Sbihi, N. (eds.) Proceedings of the Montreal 2006 NATO Conference

  14. Lenstra A.K., Lenstra H.W. Jr, Lovász L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lenstra H.W. Jr.: Flags and lattice basis reduction. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S.(eds) Proceedings of the third European Congress of Mathematics, vol. I, pp. 37–51. Birkhäuser Verlag, Basel (2000)

    Google Scholar 

  16. Lenstra, H.W. Jr.: Lattices. To appear in: Surveys in Algorithmic Number Theory, Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (2005)

  17. Lovász L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in applied mathematics, vol. 50. SIAM, Philadelphia (1986)

    Google Scholar 

  18. Louveaux Q., Wolsey L.A.: Combining problem structure with basis reduction to solve a class of hard integer programs. Math. Oper. Res. 27(3), 470–484 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martin R.K., Schrage L.: Subset coefficient reduction cuts for 0-1 mixed integer programming. Oper. Res. 33, 505–526 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Padberg M.W.: Equivalent knapsack-type formulations of bounded integer programs: an alternative approach. Naval Res. Log. Q. 19, 699–708 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schrijver A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  22. Xpress-MP Optimization Software. Dash optimization. http://www.dashoptimization.com/home/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Aardal.

Additional information

This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438. The first author is financed in part by the Dutch BSIK/BRICKS project. The research was carried out in part while the second author visited CWI, Amsterdam with the support of the NWO visitor grant number B 61-556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aardal, K., Wolsey, L.A. Lattice based extended formulations for integer linear equality systems. Math. Program. 121, 337–352 (2010). https://doi.org/10.1007/s10107-008-0236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0236-7

Keywords

Mathematics Subject Classification (2000)

Navigation