Skip to main content
Log in

An application of the Lovász–Schrijver M(K, K) operator to the stable set problem

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Although the lift-and-project operators of Lovász and Schrijver have been the subject of intense study, their M(K, K) operator has received little attention. We consider an application of this operator to the stable set problem. We begin with an initial linear programming (LP) relaxation consisting of clique and non-negativity inequalities, and then apply the operator to obtain a stronger extended LP relaxation. We discuss theoretical properties of the resulting relaxation, describe the issues that must be overcome to obtain an effective practical implementation, and give extensive computational results. Remarkably, the upper bounds obtained are sometimes stronger than those obtained with semidefinite programming techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balas, E., Ceria, S., Cornuéjols, G., Pataki G.: Polyhedral methods for the maximum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Op. cit., pp. 11–28. (1996)

  2. Borndörfer, R.: Aspects of Set Packing, Partitioning and Covering. Doctoral Thesis, Technical University of Berlin (1998)

  3. Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Opt. 16, 726–750 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheng, E., De Vries, S.: Antiweb-wheel inequalities and their separation problems over the stable set polytopes. Math. Program. 92, 153–175 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Repository ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

  6. Website http://www.math.uni-klu.ac.at/or/Software/software.html

  7. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. 109, 345–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fulkerson, D.R.: Anti-blocking polyhedra. J. Comb. Th. (B) 12, 50–71 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giandomenico, M.: Extended Formulations for the Stable Set Problem: Theory and Experiments. Phd Thesis, University of Rome ‘La Sapienza’ (2006)

  10. Gerards, A.M.H., Schrijver, A.J.: Matrices with the Edmonds–Johnson property. Combinatorica 6, 365–379 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giandomenico, M., Letchford, A.N.: Exploring the relationship between max-cut and stable set relaxations. Math. Program. 106, 159–175 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  13. Gruber, G., Rendl, F.: Computational experience with stable set relaxations. SIAM J. Opt. 13, 1014–1028 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Håstad, J.: Clique is hard to approximate within n 1-ϵ. Acta Math. 182, 105–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoffman, K., Padberg, M.W.: Solving airline crew scheduling problems by branch-and-cut. Manage. Sci. 39, 657–682 (1993)

    Article  MATH  Google Scholar 

  16. Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability: the 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

  17. Juhász, F.: The asymptotic behaviour of Lovász’ θ function for random graphs. Combinatorica 2, 153–155 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Laurent, M., Poljak, S., Rendl, F.: Connections between semidefinite relaxations of the max-cut and stable set problems. Math. Program. 77, 225–246 (1997)

    MathSciNet  Google Scholar 

  19. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discr. Math. 2, 253–267 (1972)

    Article  MATH  Google Scholar 

  20. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  21. Lovász, L., Schrijver, A.J.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Opt. 1, 166–190 (1991)

    Article  MATH  Google Scholar 

  22. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. Optimization online, http://www.optimization-online.org/DB_FILE/2007/10/1800.pdf (2007)

  23. Nemhauser, G.L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Opl. Res. Soc. 43, 443–457 (1992)

    Article  MATH  Google Scholar 

  24. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  25. Padberg, M.W.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Régin, J.-C.: Using constraint programming to solve the maximum clique problem. In: Rossi, F. (ed) Proceedings of CP 2003. Lecture Notes in Computer Science, vol. 2833. Springer, Berlin (2003)

  28. Rossi, F., Smriglio, S.: A branch-and-cut algorithm for the maximum cardinality stable set problem. Oper. Res. Lett. 28, 63–74 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schrijver, A.J.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory IT-25, 425–429 (1979)

    Article  MathSciNet  Google Scholar 

  30. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique, with computational experiments. J. Glob. Opt. 37, 95–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Trotter, L.E.: A class of facet-producing graphs for vertex packing polyhedra. Discr. Math. 12, 373–388 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yildirim, E.A., Fan, X.: On extracting maximum stable sets in perfect graphs using Lovász’s theta function. Comput. Opt. Appl. 33, 229–247 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam N. Letchford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giandomenico, M., Letchford, A.N., Rossi, F. et al. An application of the Lovász–Schrijver M(K, K) operator to the stable set problem. Math. Program. 120, 381–401 (2009). https://doi.org/10.1007/s10107-008-0219-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0219-8

Keywords

Mathematics Subject Classification (2000)

Navigation