Skip to main content
Log in

Recognizing underlying sparsity in optimization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Exploiting sparsity is essential to improve the efficiency of solving large optimization problems. We present a method for recognizing the underlying sparsity structure of a nonlinear partially separable problem, and show how the sparsity of the Hessian matrices of the problem’s functions can be improved by performing a nonsingular linear transformation in the space corresponding to the vector of variables. A combinatorial optimization problem is then formulated to increase the number of zeros of the Hessian matrices in the resulting transformed space, and a heuristic greedy algorithm is applied to this formulation. The resulting method can thus be viewed as a preprocessor for converting a problem with hidden sparsity into one in which sparsity is explicit. When it is combined with the sparse semidefinite programming relaxation by Waki et al. for polynomial optimization problems, the proposed method is shown to extend the performance and applicability of this relaxation technique. Preliminary numerical results are presented to illustrate this claim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H.(eds) Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer, New York (1993)

    Google Scholar 

  2. Conn, A.R., Gould, N.I.M., Toint, Ph.L: Improving the decomposition of partially separable functions in the context of large-scale optimization: a first approach. In: Hager, W.W., Hearn, D.W., Pardalos, P.M.(eds) Large Scale Optimization: State of the Art, pp. 82–94. Kluwer, Dordrecht (1994)

    Google Scholar 

  3. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: LANCELOT, A Fortran Package for large-Scale Nonlinear Optimization (Release A). Springer, Heidelberg (1992)

    MATH  Google Scholar 

  4. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Saunders College Publishing, Fort Worth (1976)

    MATH  Google Scholar 

  5. Gay, D.M.: Automatically Finding and Exploiting Partially Separable Structure in Nonlinear Programming Problems. Bell Laboratories, Murray Hill (1996)

    Google Scholar 

  6. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environment, revisited. TOMS 29, 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD, a library of thread-safe Fortran packages for large-scale nonlinear optimization. TOMS 29, 353–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griewank, A., Toint, Ph.L.: On the unconstrained optimization of partially separable functions. In: Powell, M.J.D.(eds) Nonlinear Optimization 1981, pp. 301–312. Academic Press, New York (1982)

    Google Scholar 

  9. Griewank, A., Toint, Ph.L.: Partitioned variable metric updates for large structured optimization problems. Numerische Mathematik 39, 119–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Griewank, A., Toint, Ph.L.: Local convergence analysis for partitioned quasi-Newton updates. Numerische Mathematik 39, 429–448 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griewank, A., Toint, Ph.L.: On the existence of convex decomposition of partially separable functions. Math. Program. 28, 25–49 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gümüs, Z., Harding, S., Klepeis, J., Meyer, C., Schweiger, C.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  13. GLOBAL Library. http://www.gamsworld.org/global/globallib.htm

  14. Kim, S., Kojima, M., Waki, H.: Generalized Lagrangian duals and sums of squares relaxation of sparse polynomial optimization problems. SIAM J. Optim. 15, 697–719 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kojima, M., Kim, S., Waki, H.: Sparsity in sums of squares of polynomials. Math. Program. 103, 45–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kojima, M., Muramatsu, M.: A note on SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comput. Optim. Appl. (2008, to appear)

  17. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J. Optim. 1, 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  18. Lasserre, J.B.: Convergent semidefinite relaxation in polynomial optimization with sparsity. Working paper, LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France (2005)

  19. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Soft. 7, 17–41 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  21. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11 & 12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  22. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: SparsePOP : a sparse semidefinite programming relaxation of polynomial optimization problems. Research Report B-414, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan (2005). ACM Trans Math Softw (to appear)

  24. Yamashita, N.: Sparse quasi-Newton updates with positive definite matrix completion. Technical Report 2005-0008, Applied Mathematics and Physics, Kyoto University 606-8501, Kyoto, Japan (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim.

Additional information

S. Kim’s research was supported by Kosef R01-2005-000-10271-0.

M. Kojima’s research was supported by Grant-in-Aid for Scientific Research on Priority Areas 16016234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Kojima, M. & Toint, P. Recognizing underlying sparsity in optimization. Math. Program. 119, 273–303 (2009). https://doi.org/10.1007/s10107-008-0210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0210-4

Mathematics Subject Classification (2000)

Navigation