Skip to main content
Log in

Merit functions in vector optimization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the weak domination property and weakly efficient solutions in vector optimization problems. In particular scalarization of these problems is obtained by virtue of some suitable merit functions. Some natural conditions to ensure the existence of error bounds for merit functions are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P. and Ekeland I. (1984). Applied Nonlinear Analysis. Pure and Applied Mathematics, New York

    MATH  Google Scholar 

  2. Aubin J.P. and Frankowska H. (1990). Set-Valued Analysis. Birkhäuser, Boston

    MATH  Google Scholar 

  3. Benson H.P. (1979). An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71: 232–241

    Article  MATH  MathSciNet  Google Scholar 

  4. Borwein J.M. and Zhuang D. (1993). Super efficiency in vector optimization. Trans. Am. Math. Soc. 338: 105–122

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen G.Y. and Jahn J. (1998). Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48(2): 187–200

    Article  MATH  MathSciNet  Google Scholar 

  6. Coulibaly, A., Crouzeix, J.-P.: Condition numbers and error bounds in convex programming, preprint Univ. Clermont-Ferrand, 2002; to appear in Math. Program. B

  7. Deng S. and Yang X.Q. (2005). Weak sharp minima in multicriteria linear programming. SIAM J. Optim. 15: 456–460

    Article  MathSciNet  Google Scholar 

  8. Ehrgott M. (2000). Multicriteria Optimization. Springer, Berlin

    MATH  Google Scholar 

  9. Facchinei F. and Pang J.S. (2003). Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, New York

    Google Scholar 

  10. Ginchev I., Guerraggio A. and Rocca M. (2005). Second-order conditions in C 1,1 constrained vector optimization. Math. Program. 104: 389–405

    Article  MATH  MathSciNet  Google Scholar 

  11. Ginchev I. and Hoffmann A. (2002). Approximation of set-valued functions by single-valued one. Discuss. Math., Differ. Incl. Control Optim. 22: 33–66

    MATH  MathSciNet  Google Scholar 

  12. Göpfert A., Riahi H., Tammer C. and Zălinescu C. (2003). Variational Methods in Partially Ordered Spaces. Springer, New York

    MATH  Google Scholar 

  13. Gugliemo F.Di. (1977). Nonconvex duality in multiobjective optimization. Math. Oper. Res. 2: 285–291

    Article  MathSciNet  Google Scholar 

  14. Hiriart-Urruty J.B. (1979). New concepts in nondifferentiable programming. Bull. Soc. Math. France Mm. 60: 57–85

    MathSciNet  Google Scholar 

  15. Hiriart-Urruty J.B. (1979). Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4: 79–97

    Article  MATH  MathSciNet  Google Scholar 

  16. Holmes R.B. (1975). Geometric Functional Analysis and its Applications. Springer, New York

    MATH  Google Scholar 

  17. Huang L.R. and Ng K.F. (2004). On first- and second-order conditions for error bounds. SIAM J. Optim. 14(4): 1057–1073

    Article  MATH  MathSciNet  Google Scholar 

  18. Jahn J. (1984). Scalarization in vector optimization. Math. Program. 29: 203–218

    Article  MATH  MathSciNet  Google Scholar 

  19. Jahn J. (1985). A Characterization of properly minimal elements of a set. SIAM J. Control Optim. 23: 649–656

    Article  MATH  MathSciNet  Google Scholar 

  20. Khanh P.Q. (1993). Optimality conditions via norm scalarization in vector optimization. SIAM J. Control Optim. 31: 646–658

    Article  MATH  MathSciNet  Google Scholar 

  21. Luc D.T. (1989). Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin

    Google Scholar 

  22. Mangasarian O.L. (1976). Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J. Appl. Math. 31: 89–92

    Article  MATH  MathSciNet  Google Scholar 

  23. Ng K.F. and Yang W.H. (2004). Regularities and their relations to error bounds. Math. Program. Ser. A 99: 521–538

    Article  MATH  MathSciNet  Google Scholar 

  24. Ng K.F. and Zheng X.Y. (2001). Error bounds for lower semicontinuous functions in normed vector spaces. SIAM J. Optim. 12: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  25. Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin

    MATH  Google Scholar 

  26. Schaefer H.H. (1970). Topological Vector Spaces. Springer, Berlin

    Google Scholar 

  27. Taa A. (2003). Subdifferentials of multifunctions and Lagrange multipliers for multiobjective optimization. J. Math. Anal. Appl. 283: 398–415

    Article  MATH  MathSciNet  Google Scholar 

  28. White D.J. (1976). Fundamentals of Decision Theory. American Elsevier, New York

    MATH  Google Scholar 

  29. Zaffaroni A. (2003). Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42: 1071–1086

    Article  MATH  MathSciNet  Google Scholar 

  30. Zălinescu C. (1978). A Generalization of the Farkas lemma and applications to convex programming. J. Math. Anal. Appl. 66: 651–678

    Article  MATH  MathSciNet  Google Scholar 

  31. Zălinescu C. (2002). Convex Analysis in General Vector Spaces. World Scientific, Singapore

    MATH  Google Scholar 

  32. Zălinescu C. (2003). A Nonlinear extension of Hoffman’s error bounds for linear inequalities. Math. Oper. Res. 28(3): 524–532

    Article  MATH  MathSciNet  Google Scholar 

  33. Zheng X.Y. (2000). Scalarization of Henig proper efficient points in a normed vector space. J. Optim. Theory Appl. 105: 233–247

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Liu.

Additional information

This research was supported by a direct grant (CUHK) and an Earmarked Grant from the Research Grant Council of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.G., Ng, K.F. & Yang, W.H. Merit functions in vector optimization. Math. Program. 119, 215–237 (2009). https://doi.org/10.1007/s10107-008-0208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0208-y

Keywords

Mathematics Subject Classification (2000)

Navigation