Skip to main content
Log in

On a semi-smooth Newton method and its globalization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper addresses the globalization of the semi-smooth Newton method for non-smooth equations F(x)  =  0 in \({\mathbb{R}}^m\) with applications to complementarity and discretized ℓ1-regularization problems. Assuming semi-smoothness it is shown that super-linearly convergent Newton methods can be globalized, if appropriate descent directions are used for the merit function |F(x)|2. Special attention is paid to directions obtained from the primal-dual active set strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    MATH  Google Scholar 

  2. Kunisch K. and de los Reyes J.C. (2004). A comparison of algorithms for control constrained optimal control of the Burgers equation. Calcolo 41: 203–225

    Article  MATH  MathSciNet  Google Scholar 

  3. Facchinei F. and Pang J.-S. (2003). Finite Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, Berlin

    MATH  Google Scholar 

  4. Han S.-H., Pang J.-S. and Rangaraj N. (1992). Globally convergent Newton methods for nonsmooth equations. Math. Oper. Res. 17: 586–607

    Article  MATH  MathSciNet  Google Scholar 

  5. Haraux A. (1977). How to differentiate the projection on a closed convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29: 615–631

    MATH  MathSciNet  Google Scholar 

  6. Hintermüller M., Ito K. and Kunisch K. (2002). The primal–dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13: 865–888

    Article  MathSciNet  Google Scholar 

  7. Ito K. and Kunisch K. (2004). The primal–dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Control Optim. 43: 357–376

    Article  MATH  MathSciNet  Google Scholar 

  8. Kanzow C. (2000). Global optimization techniques for mixed complementarity problems. J. Global Optim. 16: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  9. Kanzow C. (2004). Inexact semismooth Newton methods for large-scale complementarity problems. Optim. Methods Softw. 19: 309–325

    Article  MATH  MathSciNet  Google Scholar 

  10. Kunisch K. and Rendl F. (2003). An infeasible active set method for convex problems with simple bounds. SIAM J. Optim. 14: 35–52

    Article  MATH  MathSciNet  Google Scholar 

  11. Mifflin R. (1977). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15: 959–972

    Article  MATH  MathSciNet  Google Scholar 

  12. Pang J.S. (1990). Newton’s method for B-differentiable equations. Math. Oper. Res. 15: 311–341

    Article  MATH  MathSciNet  Google Scholar 

  13. Qi L. and Sun J. (1993). A nonsmooth version of Newton’s method. Math. Program. 58: 353–367

    Article  MathSciNet  Google Scholar 

  14. Qi L. (1993). Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18: 227–244

    Article  MATH  MathSciNet  Google Scholar 

  15. Robinson S.M. (1987). Local structure of feasible sets in nonlinear programming, part III: Stability and sensitivity. Math. Program. Study 30: 45–66

    MATH  Google Scholar 

  16. Shapiro A. (1990). On concepts of directional differentiability. J. Optim. Theory Appl. 13: 477–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunisch.

Additional information

K. Ito’s research was partially supported by the Army Research Office under DAAD19-02-1-039.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Kunisch, K. On a semi-smooth Newton method and its globalization. Math. Program. 118, 347–370 (2009). https://doi.org/10.1007/s10107-007-0196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0196-3

Mathematics Subject Classification (2000)

Navigation