Skip to main content
Log in

Bidimensional packing by bilinear programming

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider geometric problems in which rectangles have to be packed into (identical) squares. These problems turn out to be very hard in practice, and ILP formulations in which variables specify the coordinates in the packing perform very poorly. While most methods developed so far are based on simple geometric considerations, a recent landmark result of Fekete and Schepers suggests to put these geometric aspects aside and use the most advanced tools for the one-dimensional case. In this paper we make additional progress in this direction, especially on the basic question “Does a given set of rectangles fit into a square?”, which turns out to be the bottleneck of all the approaches known. Given a set of rectangles and the associated convex hull of rectangle subsets that fit into a square, we derive a wide class of valid inequalities for this convex hull from a complete description of the two knapsack polytopes associated with the widths and the heights of the rectangles, respectively. In addition, we illustrate how to solve the associated separation problem as a bilinear program, for which we develop a solution method that turns out to be fast in practice, and show that the integer solutions that satisfy all these constraints generally correspond to vertices of the original convex hull for the benchmark instances in the literature. The same tools are used to derive lower bounds for the two-dimensional bin packing problem, corresponding to the determination of an optimal pair of so-called dual feasible functions. These lower bounds in many cases equal those obtained by the customary set covering formulation (for which column generation is very hard), but are computable within a time that is smaller by some orders of magnitude. This allows us to close a few of the benchmark instances in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alarie S., Audet C., Jaumard B., Savard G. (2001). Concavity cuts for disjoint bilinear programming. Math. Program. 90: 373–398

    Article  MATH  MathSciNet  Google Scholar 

  2. Al-Khayyal F.A. (1992). Generalized bilinear programming: Part I. Models, applications and linear programming relaxation. Eur. J. Oper. Res. 60: 306–314

    Article  MATH  Google Scholar 

  3. Al-Khayyal F.A., Sherali H.D. (2000). On finitely terminating branch-and-bound algorithms for some global optimization problems. SIAM J. Optim. 10: 1049–1057

    Article  MATH  MathSciNet  Google Scholar 

  4. Applegate, D.L., Buriol, L.S., Dillard, B.L., Johnson, D.S., Shor, P.W.: The cutting-stock approach to bin packing: theory and experiments. In: Ladner, R.E. (ed.) Procedings of the 5th Workshop on Algorithm Engineering and Experimentation, Baltimore, pp. 1–15. SIAM, Philadelphia (2003)

  5. Audet C., Hansen P., Jaumard B., Savard G. (1999). A symmetrical linear maxmin approach to disjoint bilinear programming. Math. Program. 85: 573–592

    Article  MATH  MathSciNet  Google Scholar 

  6. Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithms for multidimensional bin packing problems. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, pp. 697–708. IEEE Computer Society, Washington, DC (2006)

  7. Berkey J.O., Wang P.Y. (1987). Two dimensional finite bin packing algorithms. J. Oper. Res. Soc. 38: 423–429

    Article  MATH  Google Scholar 

  8. Boschetti M.A., Mingozzi A. (2003). The two-dimensional finite bin packing problem. Part I: new lower bounds for the oriented case. 4OR 1: 27–42

    MATH  MathSciNet  Google Scholar 

  9. Boschetti M.A., Mingozzi A. (2003). The two-dimensional finite bin packing problem. Part II: new lower and upper bounds. 4OR 1: 135–147

    MATH  MathSciNet  Google Scholar 

  10. Boyd E.A. (1992). A pseudopolynomial network flow formulation for exact knapsack separation. Networks 22: 503–514

    Article  MATH  MathSciNet  Google Scholar 

  11. Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), Vancouver, pp. 490–499. IEEE Computer Society, Washington, DC (2002)

  12. Caprara, A.: Worst-case analysis of a wide class of relaxations for knapsack-type and bin-packing-type problems. (2006, Manuscript)

  13. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. (2007, Manuscript)

  14. Caprara, A., Locatelli, M., Monaci, M.: Bidimensional packing by bilinear programming. In: Jünger, M., Kaibel, V. (eds.) Proceedings of the 11th Conference on Integer Programming and Combinatorial Optimization (IPCO’05), Lecture Notes in Computer Science 3509, Berlin, pp. 377–391. Springer, Berlin (2005)

  15. Caprara A., Lodi A., Monaci M. (2005). Fast approximation schemes for two-stage, two-dimensional bin packing. Math. Oper. Res. 30: 136–156

    Article  MathSciNet  Google Scholar 

  16. Caprara A., Monaci M. (2004). On the 2-dimensional knapsack problem. Oper. Res. Lett. 32: 5–14

    Article  MATH  MathSciNet  Google Scholar 

  17. Chan L.M.A., Simchi-Levi D., Bramel J. (1998). Worst-case analyses, linear programming and the bin packing problem. Math. Program. 83: 213–227

    MathSciNet  Google Scholar 

  18. Crowder H., Johnson E., Padberg M.W. (1983). Solving large-scale zero-one linear programming problems. Oper. Res. 31: 803–834

    Article  MATH  Google Scholar 

  19. Csirik J., Vliet A. (1993). An on-line algorithm for multidimensional bin packing. Oper. Res. Lett. 13: 149–158

    Article  MATH  MathSciNet  Google Scholar 

  20. Farley A.A. (1990). A note on bounding a class of linear programming problems, including cutting stock problems. Oper. Res. 38: 922–923

    Article  MATH  Google Scholar 

  21. Fekete S.P., Schepers J. (2001). New classes of fast lower bounds for bin packing problems. Math. Program. 91: 11–31

    MATH  MathSciNet  Google Scholar 

  22. Fekete S.P., Schepers J. (2004). A combinatorial characterization of higher-dimensional orthogonal packing. Math. Oper. Res. 29: 353–368

    Article  MATH  MathSciNet  Google Scholar 

  23. Fekete S.P., Schepers J. (2004). A general framework for bounds for higher-dimensional orthogonal packing problems. Math. Methods Oper. Res. 60: 311–329

    Article  MATH  MathSciNet  Google Scholar 

  24. Fekete S.P., Schepers J., Veen J.C. (2007). An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55: 569–587

    Article  MathSciNet  Google Scholar 

  25. Fernandezdela Vega W., Lueker G.S. (1981). Bin packing can be solved within 1 + ε in linear time. Combinatorica 1: 349–355

    Article  MathSciNet  Google Scholar 

  26. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Kluwer, Dordrecht (1995)

  27. Gilmore P.C., Gomory R.E. (1965). Multistage cutting problems of two and more dimensions. Oper. Res. 13: 94–119

    Article  MATH  Google Scholar 

  28. Grötschel M., Lovász L., Schrijver A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1: 169–197

    Article  MATH  MathSciNet  Google Scholar 

  29. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), Chicago, pp. 312–320. IEEE Computer Society, Washington, DC (1982)

  30. Karp R.M., Papadimitriou C.H. (1982). On linear characterization of combinatorial optimization problems. SIAM J. Comput. 11: 620–632

    Article  MATH  MathSciNet  Google Scholar 

  31. Kellerer H., Pferschy U., Pisinger D. (2004). Knapsack Problems. Springer, Berlin

    MATH  Google Scholar 

  32. Lee C.C., Lee D.T. (1985). A simple on-line bin packing algorithm. J. ACM 32: 562–572

    Article  MATH  Google Scholar 

  33. Martello S., Pisinger D., Vigo D. (2000). The three-dimensional bin packing problem. Oper. Res. 48: 256–267

    Article  MATH  MathSciNet  Google Scholar 

  34. Martello S., Toth P. (1990). Lower bounds and reduction rrocedures for the bin packing problem. Discret. Appl. Math. 28: 59–70

    Article  MATH  MathSciNet  Google Scholar 

  35. Martello S., Toth P. (1990). Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester

    MATH  Google Scholar 

  36. Martello S., Vigo D. (1998). Exact solution of the two-dimensional finite bin packing problem. Manage. Sci. 44: 388–399

    Article  MATH  Google Scholar 

  37. McCormick G.P. (1976). Computability of global solutions to factorable nonconvex programs—part I—convex underestimating problems. Math. Program. 10: 147–175

    Article  MATH  MathSciNet  Google Scholar 

  38. Monaci M., Toth P. (2006). A set-covering based heuristic approach for bin-packing problems. INFORMS J. Comput. 18: 71–85

    Article  MathSciNet  Google Scholar 

  39. Padberg, M.W., Rao, M.R.: The russian method for linear inequalities, Part III, bounded integer programming. Technical Report 81-39, New York University, Graduate School of Business and Administration (1981)

  40. Peleg B., Sudholter P. (2003). Introduction to the Theory of Cooperative Games. Kluwer, New York

    Google Scholar 

  41. Pisinger D., Sigurd M.M. (2007). On using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem. INFORMS J. Comput. 19: 36–51

    Article  MathSciNet  Google Scholar 

  42. Rizzi, R.: Personal communication (1998)

  43. Scheithauer G. (1994). On the MAXGAP problem for cutting stock problems. J. Info. Process. Cybern. 30: 111–117

    MATH  Google Scholar 

  44. Scheithauer G., Terno J. (1995). The modified integer round-up property of the one-dimensional cutting stock problem. Eur. J. Oper. Res. 84: 562–571

    Article  MATH  Google Scholar 

  45. Seiden S.S., Stee R. (2003). New bounds for multi-dimensional packing. Algorithmica 36: 261–293

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Caprara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caprara, A., Monaci, M. Bidimensional packing by bilinear programming. Math. Program. 118, 75–108 (2009). https://doi.org/10.1007/s10107-007-0184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0184-7

Keywords

Mathematics Subject Classification (2000)

Navigation