Skip to main content
Log in

Largest dual ellipsoids inscribed in dual cones

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Suppose x̄ and s̄ lie in the interiors of a cone K and its dual K *, respectively. We seek dual ellipsoidal norms such that the product of the radii of the largest inscribed balls centered at x̄ and s̄ and inscribed in K and K *, respectively, is maximized. Here the balls are defined using the two dual norms. When the cones are symmetric, that is self-dual and homogeneous, the solution arises directly from the Nesterov–Todd primal–dual scaling. This shows a desirable geometric property of this scaling in symmetric cone programming, namely that it induces primal/dual norms that maximize the product of the distances to the boundaries of the cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh F., Goldfarb D. (2003). Second-order cone programming. Math. Program. 95(1): 3–51

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Tal, A., Nemirovskii, A.: Lectures on modern convex optimization: analysis, algorithms, and Engineering Applications, MPS/SIAM Series on Optimization, vol. 2. SIAM, Philadelphia (2001)

  3. Faraut J., Koranyi A. (1994). Analysis on Symmetric Cones. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Freund R.M. (2003). On the primal–dual geometry of level sets in linear and conic optimization. SIAM J. Optim. 13(4): 1004–1013

    Article  MATH  MathSciNet  Google Scholar 

  5. Freund R.M. (2004). Complexity of convex optimization using geometry-based measures and a reference point. Math. Program. 99(2): 197–221

    Article  MATH  MathSciNet  Google Scholar 

  6. Güler O. (1996). Barrier functions in interior point methods. Math. Oper. Res. 21: 860–885

    MATH  MathSciNet  Google Scholar 

  7. Güler O. (1997). Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22: 350–377

    MATH  MathSciNet  Google Scholar 

  8. Lewis, A.S., Overton, M.L.: Eigenvalue optimization. In: Acta Numerica 5, pp. 149–190. Cambridge University Press, Cambridge (1996)

  9. Lobo M.S., Vandenberghe L., Boyd S., Lebret H. (1998). Applications of second-order cone programming. Linear Algebra Appl. 284(1–3): 193–228

    Article  MATH  MathSciNet  Google Scholar 

  10. Nesterov Y.E., Nemirovskii A.S. (1993). Interior point polynomial methods in convex programming: theory and algorithms. SIAM Publications, Philadelphia

    Google Scholar 

  11. Nesterov Y.E., Todd M.J. (1997). Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22: 1–42

    MATH  MathSciNet  Google Scholar 

  12. Nesterov Y.E., Todd M.J. (1998). Primal–dual interior-point methods for self-scaled cones. SIAM J. Optim. 8: 324–364

    Article  MATH  MathSciNet  Google Scholar 

  13. Renegar J. (1994). Some perturbation theory for linear programming. Math. Program. 65: 73–91

    Article  MathSciNet  Google Scholar 

  14. Renegar J. (1995). Linear programming, complexity theory and elementary functional analysis. Math. Program. 70: 279–351

    MathSciNet  Google Scholar 

  15. Robinson S.M. (1973). Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl. 6: 69–81

    Article  MATH  Google Scholar 

  16. Robinson S.M. (1992). Normal maps induced by linear transformations. Math. Oper. Res. 17: 691–714

    Article  MATH  MathSciNet  Google Scholar 

  17. Todd M.J. (1994). Scaling, shifting and weighting in interior-point methods. Comput. Optim. Appl. 3: 305–315

    Article  MATH  MathSciNet  Google Scholar 

  18. Todd, M.J.: Semidefinite optimization. In: Acta Numerica. 10, pp. 515–560. Cambridge University Press, Cambridge (2001)

  19. Vandenberghe L., Boyd S. (1996). Semidefinite programming. SIAM Rev. 38: 49–95

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Todd.

Additional information

Dedicated to Steve Robinson on the occasion of his 65th birthday.

This author was supported in part by NSF through grants DMS-0209457 and DMS-0513337 and ONR through grant N00014-02-1-0057.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, M.J. Largest dual ellipsoids inscribed in dual cones. Math. Program. 117, 425–434 (2009). https://doi.org/10.1007/s10107-007-0171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0171-z

Keywords

Navigation