Skip to main content
Log in

Tame functions are semismooth

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Superlinear convergence of the Newton method for nonsmooth equations requires a “semismoothness” assumption. In this work we prove that locally Lipschitz functions definable in an o-minimal structure (in particular semialgebraic or globally subanalytic functions) are semismooth. Semialgebraic, or more generally, globally subanalytic mappings present the special interest of being γ-order semismooth, where γ is a positive parameter. As an application of this new estimate, we prove that the error at the kth step of the Newton method behaves like \(O(2^{-{(1+\gamma)}^k})\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolte J., Daniilidis A., Lewis A. (2007). The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17: 1205–1223

    Article  MATH  MathSciNet  Google Scholar 

  2. Bolte J., Daniilidis A., Lewis A. (2006). A nonsmooth Morse-Sard theorem for subanalytic functions. J. Math. Anal. Appl. 321: 729–740

    Article  MATH  MathSciNet  Google Scholar 

  3. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke critical values of subanalytic Lipschitz continuous functions. Ann. Polon. Math. 87, 13–25 (2005) (memorial issue for S. Lojasiewicz).

    Google Scholar 

  4. Benedetti R., Risler J-J. (1990). Real Algebraic and Semi-Algebraic Sets. Hermann, Paris

    MATH  Google Scholar 

  5. Bierstone E., Milman P. (1988). Semianalytic and subanalytic sets. IHES Publ. Math. 67: 5–42

    MATH  MathSciNet  Google Scholar 

  6. Bochnak J., Coste M., Roy M.-F. (1998). Real Algebraic Geometry. Springer, Berlin

    MATH  Google Scholar 

  7. Bonnans, F., Gilbert, J.-C., Lemaréchal, C., Sagastizábal, C.: Numerical optimization. Theoretical and applied aspects, Mathematics & Applications 27, Springer, Berlin (2002)

  8. Clarke, F.: Optimization and nonsmooth analysis, 2nd edn. Classics in Applied Mathematics 5, SIAM, Philadelphia (1990)

  9. Coste, M.: An Introduction to o-minimal Geometry, RAAG Notes, 81 pages, Institut de Recherche Mathématiques de Rennes (1999)

  10. Dedieu J.-P. (1992). Penalty functions in subanalytic optimization. Optimization 26: 27–32

    Article  MATH  MathSciNet  Google Scholar 

  11. van den Dries L., Miller C. (1996). Geometric categories and o-minimal structures. Duke Math. J. 84: 497–540

    Article  MATH  MathSciNet  Google Scholar 

  12. Facchinei F., Fischer A., Kanzow C. (1996). Inexact Newton methods for semismooth equations with applications to variational inequality problems. In: DiPillo, G., Giannessi, F. (eds) Nonlinear Optimization and Applications, pp 125–139. Plenum Press, New York

    Google Scholar 

  13. Facchinei F., Pang J.-S. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II. Springer, New York

    Google Scholar 

  14. Fischer, A.: Peano-differentiable functions in o-minimal structures, Ph.D Dissertation (2005)

  15. Kummer B. (1988). Newton’s method for non-differentiable functions. In: Guddat, J. (eds) Advances in Mathematical Optimization, pp 114–125. Akademie-Verlag, Berlin

    Google Scholar 

  16. Kurdyka K. (1998). On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48: 769–783

    MATH  MathSciNet  Google Scholar 

  17. Kuntz L., Scholtes S. (1994). Structural analysis of nonsmooth mappings, inverse functions and metric projections. J. Math. Anal. Appl. 188: 346–386

    Article  MATH  MathSciNet  Google Scholar 

  18. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations aux Dérivées Partielles, pp. 87–89, Éditions du Centre National de la Recherche Scientifique, Paris, (1963)

  19. Luo Z., Pang J.-S. (1994). Error bounds for analytic systems and their applications. Math. Prog. 67: 1–28

    Article  MathSciNet  Google Scholar 

  20. Mifflin R. (1997). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15: 957–972

    MathSciNet  Google Scholar 

  21. Pang, J.S., Stewart, D.E.: Solution dependence on initial conditions in differential variational inequalities, Math. Prog. (2007, in press)

  22. Qi L., Sun J. (1993). A nonsmooth version of Newton’s method. Math. Prog. 58: 353–367

    Article  MathSciNet  Google Scholar 

  23. Robinson, S.M.: Newton’s method for a class of nonsmooth functions, Industrial Engineering Working Paper, University of Wisconsin (1988)

  24. Robinson S.M. (1994). Newton’s method for a class of nonsmooth functions. Set-Valued Analysis 2: 291–305

    Article  MATH  MathSciNet  Google Scholar 

  25. Shapiro A. (1990). On concepts of directional differentiability. J. Optim. Theory Appl. 66: 477–487

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras, Math. Oper. Res. (2007, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Bolte.

Additional information

Dedicated to Stephen Robinson, who has so many of the best ideas first.

A. Daniilidis was supported by the MEC Grant MTM2005-08572-C03-03 (Spain) and A. Lewis was supported by the National Science Foundation Grant DMS-0504032 (USA).

Adrian Lewis: Research supported in part by National Science Foundation Grant DMS-0504032.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolte, J., Daniilidis, A. & Lewis, A. Tame functions are semismooth. Math. Program. 117, 5–19 (2009). https://doi.org/10.1007/s10107-007-0166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0166-9

Keywords

Mathematics Subject Classification (2000)

Navigation