Skip to main content

Advertisement

Log in

Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The notion of weak sharp minima unifies a number of important ideas in optimization. Part I of this work provides the foundation for the theory of weak sharp minima in the infinite-dimensional setting. Part II discusses applications of these results to linear regularity and error bounds for nondifferentiable convex inequalities. This work applies the results of Part I to error bounds for differentiable convex inclusions. A number of standard constraint qualifications for such inclusions are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadie J.: On the Kuhn–Tucker Theorem. In: Abadie J. (ed) Nonlinear Programming, pp. 21–36. North Holland (1967)

  2. Aubin J.-P. and Ekeland I. (1984). Applied Nonlinear Analysis. Wiley–Interscience, New York

    MATH  Google Scholar 

  3. Auslender A. and Crouzeix J.-P. (1988). Global regularity theorem. Math. Oper. Res. 13: 243–253

    MATH  MathSciNet  Google Scholar 

  4. Auslender A. and Teboulle M. (2003). Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Heidelberg

    MATH  Google Scholar 

  5. Bauschke, H.: Projection algorithms and monotone operators. Ph.D. Thesis, Simon Fraser University, Department of Mathematics, Burnaby, British Columbia, V5A 1S6, Canada (1996)

  6. Bauschke H., Borwein J. and Li W. (1999). Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Prog. 86: 135–160

    Article  MATH  MathSciNet  Google Scholar 

  7. Borwein J. and Lewis A. (2000). Convex Analysis and Nonlinear Optimization, Theory and Examples CMS Books in Mathematics. Springer, New York

    Google Scholar 

  8. Burke J.V. (1991). An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29: 968–998

    Article  MATH  MathSciNet  Google Scholar 

  9. Burke J.V. (1991). Calmness and exact penalization. SIAM J. Control Optim. 29: 493–497

    Article  MATH  MathSciNet  Google Scholar 

  10. Burke J.V. and Deng S. (2002). Weak sharp minima revisited, part I: Basic theory. Control Cybernetics 31: 439–469

    MATH  MathSciNet  Google Scholar 

  11. Burke J.V. and Deng S. (2005). Weak sharp minima revisited, part II: Application to linear regularity and error bounds. Math. Program. Ser. B 104: 235–261

    Article  MATH  MathSciNet  Google Scholar 

  12. Burke J.V. and Ferris M.C. (1993). Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31: 1340–1359

    Article  MATH  MathSciNet  Google Scholar 

  13. Burke J.V. and Ferris M.C. (1995). A Gauss–Newton method for convex composite optimization. Math. Prog. 71: 179–194

    MathSciNet  Google Scholar 

  14. Burke J.V. and Moré J.J. (1988). On the identification of active constraints. SIAM J. Numer. Anal. 25: 1197–1211

    Article  MATH  MathSciNet  Google Scholar 

  15. Burke J.V. and Tseng P. (1996). A unified analysis of Hoffman’s bound via Fenchel duality. SIAM J. Optim. 6: 265–282

    Article  MATH  MathSciNet  Google Scholar 

  16. Clarke F.H. (1976). A new approach to Lagrange multipliers. Math. Oper. Res. 2: 165–174

    Google Scholar 

  17. Deng S. (1998). Global error bounds for convex inequality systems in Banach spaces. SIAM J. Control Optim. 36: 1240–1249

    Article  MATH  MathSciNet  Google Scholar 

  18. Dontchev A.L. and Rockafellar R.T. (2004). Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12: 79–109

    Article  MATH  MathSciNet  Google Scholar 

  19. Ekeland, I., Temam, R.: Convex analysis and variational problems. North Holland (1976)

  20. Ferris, M.C.: Weak sharp minima and penalty functions in mathematical programming. Tech. Report 779, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin (1988)

  21. Henrion R and Jourani A. (2002). Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13: 520–534

    Article  MATH  MathSciNet  Google Scholar 

  22. Henrion R. and Outrata J. (2001). A subdifferential criterion for calmness of multifunctions. J. Math. Anal. Appl. 258: 110–130

    Article  MATH  MathSciNet  Google Scholar 

  23. Henrion R. and Outrata J. (2005). Calmness of constraint systems with applications. Math. Prog. Ser. B. 104: 437–464

    Article  MATH  MathSciNet  Google Scholar 

  24. Hiriart-Urruty J.-B. and Lemaréchal C. (1993). Convex Analysis and Minimization Algorithms I, volume 306 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg

    Google Scholar 

  25. Hoffman A.J. (1952). On approximate solutions to systems of linear inequalities. J. Res. Nat. Bur. Stand. 49: 263–265

    Google Scholar 

  26. Jourani A. (2000). Hoffman’s error bounds, local controllability and sensitivity analysis. SIAM J. Control Optim. 38: 947–970

    Article  MATH  MathSciNet  Google Scholar 

  27. Klatte D. (1997). Hoffman’s error bound for systems of convex inequalities. In: Fiacco, A.V. (eds) Mathematical Programming with Data Perturbations, pp 185–199. Marcel Dekker Publ., Moscow

    Google Scholar 

  28. Klatte D. and Li W. (1999). Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Prog. 84: 137–160

    MATH  MathSciNet  Google Scholar 

  29. Lewis A.S. and Pang J.-S. (1998). Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez- Legaz, J.-E. and Volle, M. (eds) Proceedings of the Fifth International Symposium on Generalized Convexity held in Luminy June 17-21, 1996, pp 75–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  30. Li W. (1997). Abadie’s constraint qualification, metric regularity and error bounds for differentiable convex inequalities. SIAM J. Optim. 7: 966–978

    Article  MATH  MathSciNet  Google Scholar 

  31. Luo X.D. and Luo Z.Q. (1994). Extension of hoffman’s error bound to polynomial systems. SIAM J. Optim. 4: 383–392

    Article  MATH  MathSciNet  Google Scholar 

  32. Maguregui, J.: Regular multivalued functions and algorithmic applications. Ph.D. Thesis, University of Wisconsin at Madison, Madison, WI (1977)

    Google Scholar 

  33. Ng K.F. and Yang W.H. (2004). Regularities and their relations to error bounds. Math. Prog. Ser. A 99: 521–538

    Article  MATH  MathSciNet  Google Scholar 

  34. Ngai H.V. and Thera M. (2005). Error bounds for convex differentiable inequality systems in Banach spaces. Math. Program. Ser. B 104: 465–482

    Article  MATH  Google Scholar 

  35. Pang J.-S. (1997). Error bounds in mathematical programming. Math. Prog. 79: 299–333

    Google Scholar 

  36. Polyak, B.T.: Sharp minima. In: Proceedings of the IIASA Workshop on Generalized Lagrangians and Their Applications: Laxenburg, Austria. Institute of Control Sciences Lecture Notes, Moscow (1979)

  37. Robinson S.M. (1972). Normed convex processes. Trans. Amer. Math. Soc. 174: 127–140

    Article  MathSciNet  Google Scholar 

  38. Robinson S.M. (1975). An application of error bounds for convex programming in a linear space. SIAM J. Control 13: 271–273

    Article  MATH  MathSciNet  Google Scholar 

  39. Robinson S.M. (1976). Regularity and stability for convex multivalued functions. Math. Oper. Res. 1: 130–143

    Article  MATH  MathSciNet  Google Scholar 

  40. Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  41. Rockafellar R.T. (1974). Conjugate Duality and Optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  42. Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Heidelberg

    MATH  Google Scholar 

  43. Ursescu C. (1975). Multifunctions with closed convex graph. Czech. Math. J. 25: 438–441

    MathSciNet  Google Scholar 

  44. Yosida K. (1980). Functional Analysis. Springer, Heidelberg

    MATH  Google Scholar 

  45. Zălinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces. In: Bulatov, V., Baturin, V. (ed.) Proceedings of the 12th Baikal International Conference on Optimization Methods and their Applications, pp. 272–284, Institute of System Dynamics and Control Theory of SB RAS, Irkutsk (2001)

  46. Zheng X.Y. and Ng K.F. (2004). Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14: 757–772

    Article  MATH  MathSciNet  Google Scholar 

  47. Zheng X.Y. and Ng K.F. (2004). Error moduli for conic convex systems on Banach spaces. Math. Oper. Res. 29: 213–228

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Burke.

Additional information

We dedicate this paper to Professor A. Auslender on the occasion of his 65th birthday. We, and the optimization community at large, have greatly profited from the deep insight and intuition Professor Auslender has brought to the subject over his many years of his service.

J. V. Burke’s research was supported in part by the National Science Foundation Grant No. DMS-0505712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, J.V., Deng, S. Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions. Math. Program. 116, 37–56 (2009). https://doi.org/10.1007/s10107-007-0130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0130-8

Keywords

Mathematics Subject Classification (2000)

Navigation