Skip to main content
Log in

Efficient robust optimization for robust control with constraints

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques to reparameterize this problem as a convex program. While the reparameterized problem is theoretically tractable, the number of variables is quadratic in the number of stages or horizon length N and has no apparent exploitable structure, leading to computational time of \({\mathcal{O}}(N^{6})\) per iteration of an interior-point method. We focus on the case when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the cost function involves the minimization of a quadratic cost. Here we make use of state variables to regain a sparse problem structure that is related to the structure of the original problem, that is, the policy optimization problem may be decomposed into a set of coupled finite horizon control problems. This decomposition can then be formulated as a highly structured quadratic program, solvable by primal-dual interior-point methods in which each iteration requires \({\mathcal{O}}(N^3)\) time. This cubic iteration time can be guaranteed using a Riccati-based block factorization technique, which is standard in discrete-time optimal control. Numerical results are presented, using a standard sparse primal-dual interior point solver, that illustrate the efficiency of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson B.D.O. and Moore J.B. (1990). Optimal control: linear quadratic methods. Prentice-Hall, Inc., Upper Saddle River

    MATH  Google Scholar 

  2. Bemporad, A.: Reducing conservativeness in predictive control of constrained systems with disturbances. In: Proceeding 37th IEEE conference on decision and control, pp. 1384–1391. Tampa, FL, USA (1998)

  3. Bemporad A., Borrelli F. and Morari M. (2003). Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9): 1600–1606

    Article  MathSciNet  Google Scholar 

  4. Bemporad A. and Morari M. (1999). Robust model predictive control: a survey in robustness in identification and control. In: Garulli, A., Tesi, A. and Vicino, A. (eds) Lecture notes in control and information sciences, vol. 245., pp 207–226. Springer, Berlin

    Google Scholar 

  5. Ben-Tal A., Boyd S. and Nemirovski A. (2006). Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107(1–2): 63–89

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Tal A., Goryashko A., Guslitzer E. and Nemirovski A. (2004). Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2): 351–376

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertsekas D.P. and Rhodes I.B. (1973). Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems. IEEE Trans. Autom. Control AC-18(2): 117–124

    Article  MathSciNet  Google Scholar 

  8. Biegler, L.: Efficient solution of dynamic optimization and NMPC problems. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear model predictive control, progress in systems and control theory, vol. 26, pp. 219–243. Birkhäuser (2000)

  9. Blanchini F. (1999). Set invariance in control. Automatica 35(1): 1747–1767

    Article  MATH  Google Scholar 

  10. Boyd S. and Vandenberghe L. (2004). Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Bunch J.R., Kaufman L. and Parlett B.N. (1976). Decomposition of a symmetric matrix. Numerische Mathematik 27: 95–110

    Article  MATH  MathSciNet  Google Scholar 

  12. Camacho E.F. and Bordons C. (2004). Model predictive control, 2nd edn. Springer, London

    MATH  Google Scholar 

  13. Chisci L., Rossiter J.A. and Zappa G. (2001). Systems with persistent state disturbances: predictive control with restricted constraints. Automatica 37(7): 1019–1028

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahleh M.A. and Diaz-Bobillo I.J. (1995). Control of uncertain systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  15. Diehl M. and Björnberg J. (2004). Robust dynamic programming for min-max model predictive control of constrained uncertain systems. IEEE Trans. Autom. Control 49(12): 2253–2257

    Article  Google Scholar 

  16. Diehl M., Bock H.G. and Schlöder J.P. (2005). A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Optim. 43(5): 1714–1736

    Article  MATH  Google Scholar 

  17. Dirske S.P. and Ferris M.C. (1995). The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5: 123–156

    Article  Google Scholar 

  18. Duff I., Erisman A. and Reid J. (1986). Direct methods for sparse matrices. Oxford University Press, Oxford

    MATH  Google Scholar 

  19. Dullerud G.E. and Paganini F. (2000). A course in robust control theory: a convex approach. Springer, New York

    Google Scholar 

  20. Dunn J.C. and Bertsekas D.P. (1989). Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems. J. Optim. Theory Appl. 63(1): 23–38

    Article  MATH  MathSciNet  Google Scholar 

  21. Fialho I.J. and Georgiou T.T. (1997). ℓ1 state-feedback control with a prescribed rate of exponential convergence. IEEE Trans. Autom. Control 42(10): 1476–81

    Article  MATH  MathSciNet  Google Scholar 

  22. Fletcher R. (1987). Practical methods of optimization, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  23. Garstka S.J. and Wets R.J.B. (1974). On decision rules in stochastic programming. Math. Program. 7: 117–143

    Article  MATH  MathSciNet  Google Scholar 

  24. Gertz E.M. and Wright S.J. (2003). Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29: 58–81

    Article  MATH  MathSciNet  Google Scholar 

  25. Gondzio J. (1996). Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6: 137–156

    MATH  MathSciNet  Google Scholar 

  26. Goulart, P.J.: Affine Feedback Policies for Robust Control with Constraints. Ph.D. thesis, University of Cambridge (2006). Available at http://www-control.eng.cam.ac.uk

  27. Goulart PJ, Kerrigan E.: A convex formulation for receding horizon control of constrained discrete-time systems with guaranteed ℓ2 gain. In: Proceeding 45th IEEE conference on decision and control and 2005 European control conference (2006)

  28. Goulart P.J., Kerrigan E.C. and Maciejowski J.M. (2006). Optimization over state feedback policies for robust control with constraints. Automatica 42(4): 523–533

    Article  MATH  MathSciNet  Google Scholar 

  29. Green M. and Limebeer D.J.N. (1995). Linear Robust Control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  30. Guslitser, E.: Uncertainty-immunized solutions in linear programming. Master’s thesis, Technion, Israeli Institute of Technology (2002)

  31. van Hessem, D.H.: Stochastic inequality constrained closed-loop model predictive control. Ph.D. thesis, Technical University of Delft (2004)

  32. van Hessem, D.H., Bosgra, O.H.: A conic reformulation of model predictive control including bounded and stochastic disturbances under state and input constraints. In: Proceeding 41st IEEE conference on decision and control, pp. 4643–4648 (2002)

  33. Horn R. and Johnson C. (1985). Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  34. HSL: HSL 2002: A collection of Fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/nag/hsl (2002).

  35. Jacobson D. and Mayne D. (1970). Differential dynamic programming. Elsevier, New York

    MATH  Google Scholar 

  36. Kerrigan, E.C., Alamo, T.: A convex parameterization for solving constrained min-max problems with a quadratic cost. In: Proceeding 2004 American control conference, pp. 2220–2221. Boston, MA, USA (2004)

  37. Kerrigan, E.C., Maciejowski, J.M.: On robust optimization and the optimal control of constrained linear systems with bounded state disturbances. In: Proceeding 2003 European control conference. Cambridge, UK (2003)

  38. Lee Y.I. and Kouvaritakis B. (1999). Constrained receding horizon predictive control for systems with disturbances. Int. J. Control 72(11): 1027–1032

    Article  MATH  MathSciNet  Google Scholar 

  39. Löfberg, J.: Approximations of closed-loop MPC. In: Proceeding~42nd IEEE conference on decision and control, pp. 1438–1442. Maui, Hawaii, USA (2003)

  40. Löfberg, J.: Minimax approaches to robust model predictive control. Ph.D. thesis, Linköping University (2003)

  41. Maciejowski J.M. (2002). Predictive control with constraints. Prentice Hall, UK

    Google Scholar 

  42. Mayne D.Q. (2001). Control of constrained dynamic systems. Eur. J. Control 7: 87–99

    Article  Google Scholar 

  43. Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000). Constrained model predictive control: stability and optimality. Automatica 36(6): 789–814

    Article  MATH  MathSciNet  Google Scholar 

  44. Mayne D.Q., Seron M.M. and Raković S.V. (2005). Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2): 219–24

    Article  MATH  MathSciNet  Google Scholar 

  45. Qin S.J. and Badgwell T.A. (2003). A survey of industrial model predictive control technology. Control Eng. Practice 11: 733–764

    Article  Google Scholar 

  46. Rao C.V., Wright S.J. and Rawlings J.B. (1998). Application of interior–point methods to model predictive control. J. Optim. Theory Appl. 99: 723–757

    Article  MATH  MathSciNet  Google Scholar 

  47. Scokaert P.O.M and Mayne D.Q. (1998). Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43(8): 1136–1142

    Article  MATH  MathSciNet  Google Scholar 

  48. Scokaert P.O.M and Rawlings J.B. (1999). Feasibility issues in linear model predictive control. AIChE J. 45(8): 1649–1659

    Article  Google Scholar 

  49. Shamma J.S. (1996). Optimization of the ℓ-induced norm under full state feedback. IEEE Trans. Autom. Control 41(4): 533–44

    Article  MATH  MathSciNet  Google Scholar 

  50. Stein G. (2003). Respect the unstable. IEEE Control Syst. Magaz. 34(4): 12–25

    Article  Google Scholar 

  51. Steinbach, M.C.: Fast recursive SQP methods for large-scale optimal control problems. Ph.D. thesis, University of Heidelberg (1995)

  52. Sznaier M. and Bu J. (1998). Mixed ℓ1/H control of MIMO systems via convex optimization. IEEE Trans. Autom. Control 43(9): 1229–1241

    Article  MATH  MathSciNet  Google Scholar 

  53. Witsenhausen H.S. (1968). A minimax control problem for sampled linear systems. IEEE Trans. Autom. Control AC-13(1): 5–21

    Article  MathSciNet  Google Scholar 

  54. Wright S.J. (1993). Interior point methods for optimal control of discrete-time systems. J. Optim. Theory Appl. 77: 161–187

    Article  MATH  MathSciNet  Google Scholar 

  55. Wright S.J. (1997). Primal-dual interior-point methods. SIAM Publications, Philadelphia

    MATH  Google Scholar 

  56. Youla D.C., Jabr H.A. and Bongiorno J.J. (1976). Modern Weiner-Hopf design of optimal controllers: Part II. IEEE Trans. Autom. Control AC-21: 319–338

    Article  MathSciNet  Google Scholar 

  57. Zames G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms and approximate inverses. IEEE Trans. Autom. Control AC-26(2): 301–320

    Article  MathSciNet  Google Scholar 

  58. Zhou K., Doyle J., Glover K. (1996) Robust and optimal control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Goulart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulart, P.J., Kerrigan, E.C. & Ralph, D. Efficient robust optimization for robust control with constraints. Math. Program. 114, 115–147 (2008). https://doi.org/10.1007/s10107-007-0096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0096-6

Keywords

Navigation