Abstract
Robust Optimization is a rapidly developing methodology for handling optimization problems affected by non-stochastic “uncertain-but- bounded” data perturbations. In this paper, we overview several selected topics in this popular area, specifically, (1) recent extensions of the basic concept of robust counterpart of an optimization problem with uncertain data, (2) tractability of robust counterparts, (3) links between RO and traditional chance constrained settings of problems with stochastic data, and (4) a novel generic application of the RO methodology in Robust Linear Control.
Similar content being viewed by others
References
Adida E. and Perakis G. (2006). A robust optimization approach to dynamic pricing and inventory control with no backorders. Math. Program. 107: 97–129
Atamturk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Research Report BCOL.04.03, IEOR, University of California-Berkeley. December 2004
Atamturk, A.: Strong formulations of robust mixed 0-1 programming. Research Report BCOL.03.04, IEOR, University of California-Berkeley. December 2003. Revised February 2005
Beck A., Ben-Tal A. and Eldar Y. (2006). Robust mean-squared error estimation of multiple signals in linear systems affected by model and noise uncertainties. Math. Program. 107: 155–187
Ben-Tal A. and Nemirovski A. (1997). Stable truss topology design via semidefinite programming. SIAM J. Optim. 7: 991–1016
Ben-Tal A. and Nemirovski A. (1998). Robust convex optimization. Math. Oper. Res. 23: 769–805
Ben-Tal A. and Nemirovski A. (1999). Robust solutions to uncertain linear programs. OR Lett. 25: 1–13
Ben-Tal A. and Nemirovski A. (2000). Structural design via semidefinite programming. In: Saigal, R., Wolkowitcz, H. and Vandenberghe, L. (eds) Handbook on Semidefinite Programming., pp. Kluwer, Dordrecht
Ben-Tal A. and Nemirovski A. (2000). Robust solutions of Linear Programming problems contaminated with uncertain data. Math. Program. 88: 411–424
Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust semidefinite programming. In: Saigal, R., Vandenberghe, L., Wolkowicz, H (eds.) Semidefinite Programming and Applications. Kluwer Dordrecht (2000)
Ben-Tal, A., Margalit, T., Nemirovski, A.: Robust Modeling of Multi-Stage Portfolio Problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S.(eds.) High Performance Optimization, Dordrecht Kluwer pp. 303–328 (2000)
Ben-Tal A. and Nemirovski A. (2001). Lectures on Modern Convex Optimization. SIAM, Philadelphia
Ben-Tal A. and Nemirovski A. (2002). Robust optimization—methodology and applications. Math. Program. Ser. B 92: 453–480
Ben-Tal A. and Nemirovski A. (2002). On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. Optim. 12: 811–833
Ben-Tal A., Nemirovski A. and Roos C. (2002). Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 13: 535–560
Ben-Tal A., Nemirovski A. and Roos C. (2003). Extended Matrix Cube Theorems with applications to μ-Theory in Control. Math. Oper. Res. 28: 497–523
Ben-Tal A., Goryashko A., Guslitzer E. and Nemirovski A. (2004). Adjustable robust solutions of uncertain linear programs. Math. Program. 99: 351–376
Ben-Tal A., Golany B., Nemirovski A. and Vial J.-Ph. (2005). Supplier-retailer flexible commitments contracts: a robust optimization approach. Manuf. Serv. Oper. Manage. 7(3): 248–273
Ben-Tal, A., Boyd, S., Nemirovski, A.: Extending the scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. Ser. B, Special issue on Robust Optimization. (2006) (to appear) E-print: http://www.optimization-online.org/DB_HTML/2005/05/1136.html
Ben-Tal, A., Boyd, S., Nemirovski, A.: Control of uncertainty-affected discrete time linear systems via convex programming. SIAM J. Control Optim. (submitted); E-print: http://www.optimization-online.org/DB_HTML/2005/10/1232.html
Bertsimas, D., Sim, M.: Robust discrete optimization under ellipsoidal uncertainty sets. Technical Report, MIT, April 2004
Bertsimas D. and Sim M. (2003). Robust discrete optimization and network flows. Math. Program. Ser. B, 98: 49–71
Bertsimas D. and Sim M. (2004). The price of robustness. Oper. Res. 52(1): 35–53
Bertsimas D., Pachamanova D. and Sim M. (2004). Robust linear optimization under general norms. Oper. R. Lett. 32(6): 510–516
Bertsimas D. and Thiele A. (2006). Robust optimization approach to inventory theory. Oper. Res. 54: 150–168
Bertsimas D. and Sim M. (2006). Tractable approximations to robust conic optimization problems. Math. Program. 107: 5–36
Bhattachrrya S., Grate L., Mian S., El Ghaoui L. and Jordan M. (2004). Robust sparse hyperplane classifiers: application to uncertain molecular profiling data. J. Comput. Bio. 11(6): 1073–1089
Boyd S., El Ghaoui L., Feron E. and Balakrishnan V. (1994). Linear matrix inequalities in system and control theory. SIAM, Philadelphia
Calafiore, G., El Ghaoui, L.: Worst-case maximum likelihood estimation in the linear model. Automatica 37(4) (2001)
Charnes A., Cooper W.W. and Symonds G.H. (1958). Cost horizons and certainty equivalents: an to stochastic programming of heating oil. Manage. Sci. 4: 235–263
Dan Barb F., Ben-Tal A. and Nemirovski A. (2003). Robust dissipativity of interval uncertain system. SIAM J. Control Optim. 41: 1661–1695
Diehl M., Bock H.-G. and Kostina E. (2006). An approximation technique for robust nonlinear optimization. Math. Program. 107: 213–230
Eldar Y., Ben-Tal A. and Nemirovski A. (2005). Robust mean-squared error estimation in the presence of model uncertainties. IEEE Trans. Signal Process. 53: 168–181
El-Ghaoui L. and Lebret H. (1997). Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18: 1035–1064
El-Ghaoui L., Oustry F. and Lebret H. (1998). Robust solutions to uncertain semidefinite programs.. SIAM J. Optim. 9: 33–52
El Ghaoui L., Oks M. and Oustry F. (2003). Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4): 543–556
El Ghaoui, L.: Inversion error, condition number, and approximate inverses of uncertain matrices. Linear Algebra Appl. 343–344, 171–193 (2002)
El Ghaoui L. and Calafiore G. (2001). Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. IEEE Trans. Automat. Control 46: 1084–1089
Goldfarb D. and Iyengar G. (2003). Robust portfolio selection problems. Math. Oper. Res. 28(1): 1–37
Goldfarb D. and Iyengar G. (2003). Robust quadratically constrained programs. Math. Program. Ser. B 97(3): 495–515
Goulart, P.J., Kerrigan, E.C., Maciejowski, J.M.: Optimization over state feedback policies for robust control with constraints. Technical Report CUED/F-INFENG/TR.494, Cambridge University Engineering Department, March 2005. E-print: http://www-control.eng.cam.ac.uk/, Automatica (to appear)
Guslitser, E.: Uncertatinty-immunized solutions in linear programming. Master Thesis, Technion, Israeli Institute of Technology, IE&M faculty (2002). E-print: http://iew3.technion.ac.il/Labs/Opt/index.php?4
Iyengar G. (2005). Robust dynamic programming. Math. Oper. Res. 30(2): 1–21
Iyengar G. and Erdogan E. (2006). Ambiguous chance constrained problems and robust optimization. Math. Program. 107: 17–31
Kočvara M., Zowe J. and Nemirovski A. (2000). Cascading—an approach to robust material optimization. Comput. Struct. 76: 431–442
Kostyukova O. and Kostina E. (2006). Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Math. Program. 107: 131–153
Lanckriet G.R.G., El Ghaoui L., Bhattacharyya C. and Jordan M. (2002). A robust minimax approach to classification. J. Mach. Learn. Res. 3: 555–582
Lasserre J.B. (2006). Robust global optimization with polynomials. Math. Program. 107: 275–293
Miller L.B. and Wagner H. (1965). Chance-constrained programming with joint constraints. Oper. Res. 13: 930–945
Nemirovski, A.: Regular Banach spaces and large deviations of random sums. Paper in progress, E-print: http://www2.isye.gatech.edu/~nemirovs/
Nemirovski A. and Shapiro A. (2006). Convex approximations of chance constrained programs. SIAM J. Optim. 17: 969–996
Genin Y., Hachez Y., Nesterov Yu. and Van Dooren P. (2003). Optimization problems over positive pseudopolynomial matrices.. SIAM J. Matrix Anal. Appl. 25: 57–79
Nilim, A., El Ghaoui, L., Duong, Vu.: Algorithms for multi-aircraft re-routing under uncertainties. In: Actes de la Deuxieme Conference Internationale Associant Chercheurs Vietnamiens et Francophones en Informatique, Hanoï Vietnam, 2-5 Février 2004 (RIVF 2004)
Nilim A. and El Ghaoui L. (2005). Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53: 780–798
Perakis G. and Sood A. (2006). Competitive multi-period pricing for perishable products: a robust optimization approach. Math. Program. 107: 295–335
Pinter J. (1989). Deterministic approximations of probability inequalities.. ZOR - Methods Models Oper. Res. Ser. Theory 33: 219–239
Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton (1970)
Prékopa A. (1995). Stochastic Programming. Kluwer, Dordrecht
Prékopa, A., Vizvari, B., Badics, T.: Programming under probabilistic constraint with discrete random variables. In: Grandinetti, L. et al. (eds.) New Trends in Mathematical Programming, pp 235–257 Kluwer, Dordrecht (1997)
Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbook in OR & MS, Vol. 10, North-Holland Publishing Company, Amsterdam (2003)
Scherer C.W. and Hol C.W.J. (2006). Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107: 189–211
Soyster A.L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21: 1154–1157
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ben-Tal, A., Nemirovski, A. Selected topics in robust convex optimization. Math. Program. 112, 125–158 (2008). https://doi.org/10.1007/s10107-006-0092-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-006-0092-2
Keywords
- Optimization under uncertainty
- Robust optimization
- Convex programming
- Chance constraints
- Robust linear control