Skip to main content
Log in

An inexact primal–dual path following algorithm for convex quadratic SDP

  • Published:
Mathematical Programming Submit manuscript


We propose primal–dual path-following Mehrotra-type predictor–corrector methods for solving convex quadratic semidefinite programming (QSDP) problems of the form: \(\min_{X} \{\frac{1}{2} X\bullet \mathcal{Q}(X) + C\bullet X : \mathcal{A} (X) = b, X\succeq 0\}\), where \(\mathcal{Q}\) is a self-adjoint positive semidefinite linear operator on \(\mathcal{S}^n\), bR m, and \(\mathcal{A}\) is a linear map from \(\mathcal{S}^n\) to R m. At each interior-point iteration, the search direction is computed from a dense symmetric indefinite linear system (called the augmented equation) of dimension mn(n + 1)/2. Such linear systems are typically very large and can only be solved by iterative methods. We propose three classes of preconditioners for the augmented equation, and show that the corresponding preconditioned matrices have favorable asymptotic eigenvalue distributions for fast convergence under suitable nondegeneracy assumptions. Numerical experiments on a variety of QSDPs with n up to 1600 are performed and the computational results show that our methods are efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Alfakih A.Y., Khandani A. and Wolkowicz H. (1999). Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12: 13–30

    Article  MATH  Google Scholar 

  2. Alizadeh F., Haeberly J.-P.A. and Overton M.L. (1997). Complementarity and nondegeneracy in semidefinite programming.. Math. Program. 77: 111–128

    Google Scholar 

  3. Alizadeh F., Haeberly J.-P.A. and Overton M.L. (1998). Primal–dual interior-point methods for semidefinite programming: convergence results, stability and numerical results. SIAM J. Optim. 8: 746–768

    Article  MATH  Google Scholar 

  4. Anjos, M.F., Higham, N.J., Takouda, P.L., Wolkowicz, H.: A semidefinite programming approach for the nearest correlation matrix problem. Research Report, Department of Combinatorics and Optimization, University of Waterloo (2003)

  5. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 1–137 (2005)

  6. Benzi M. and Simoncini V. (2006). On the eigenvalues of a class of saddle point matrices. Numer. Math. 103: 173–196

    Article  MATH  Google Scholar 

  7. Bergamaschi L., Gondzio J. and Zilli G. (2004). Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28: 149–171

    Article  MATH  Google Scholar 

  8. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. and Bourne P.E. (2000). The protein data bank. Nucl. Acids Res. 28: 235–242

    Article  Google Scholar 

  9. Bhatia R. and Kittaneh F. (1990). Norm inequalities for partitioned operators and an application. Math. Ann. 287: 719–726

    Article  MATH  Google Scholar 

  10. Burer S., Monteiro R.D.C. and Zhang Y. (2002). Solving a class of semidefinite programs via nonlinear programming. Math. Program. 93: 97–122

    Article  MATH  Google Scholar 

  11. Freund, R.W., Nachtigal, N.M.: A new Krylov-subspace method for symmetric indefinite linear systems. In: Ames W.F. (ed.) Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, Atlanta, USA, pp. 1253–1256 (1994)

  12. Fujisawa K., Kojima M. and Nakata K. (1997). Exploiting sparsity in primal-dual interior-point method for semidefinite programming. Math. Program. 79: 235–253

    Google Scholar 

  13. Halicka M., Roos C. and Klerk E. (2005). Limiting behaviour of the central path in semidefinite optimization. Optim. Methods Softw. 20: 99–113

    Article  MATH  Google Scholar 

  14. Higham N.J. (2002). Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22: 329–343

    Article  MATH  Google Scholar 

  15. Horn, R., Johnson, C. Matrix Analysis. Cambridge University Press, Cambridge (1998)

  16. Keller C., Gould N.I.M. and Wathen A.J. (2000). Constraint preconditioning for indefinite linear systems. Matrix Anal. Appl. 21: 1300–1317

    Article  MATH  Google Scholar 

  17. Kojima M., Shindoh S. and Hara S. (1997). Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7: 86–125

    Article  MATH  Google Scholar 

  18. Krislock N., Lang J., Varah J., Pai D.K. and Seidel H.-P. (2004). Local compliance estimation via positive semidefinite constrained least sqaures. IEEE Trans. Robot. 20: 1007–1011

    Article  Google Scholar 

  19. Langville A.N. and Stewart W.J. (2004). A Kronecker product approximate preconditioner for SANs. Numer. Linear Algebra Appl. 11: 723–752

    Article  Google Scholar 

  20. Luo Z.-Q., Sturm J.F. and Zhang S. (1998). Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming. SIAM J. Optim. 8: 59–81

    Article  MATH  Google Scholar 

  21. Malick J. (2004). A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26: 272–284

    Article  MATH  Google Scholar 

  22. Monteiro R.D.C. and Zanjácomo P.R. (1999). Implementation of primal-dual methods for semidefinite programming based on Monteiro and Tsuchiya Newton directions and their variants.. Optim. Methods Softw. 11(12): 91–140

    Article  Google Scholar 

  23. Nie J.W. and Yuan Y.X. (2001). A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps. Ann. Oper. Res. 103: 115–133

    Article  MATH  Google Scholar 

  24. Phoon K.K., Toh K.C., Chan S.H. and Lee F.H. (2002). An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations. Int. J. Numer. Methods in Eng. 55: 377–400

    Article  MATH  Google Scholar 

  25. Qi H. and Sun D. (2006). A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28: 360–385

    MATH  Google Scholar 

  26. Saad Y. (1996). Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston

    MATH  Google Scholar 

  27. Todd M.J., Toh K.C. and Tütüncü R.H. (1998). On the Nesterov-Todd direction in semidefinite programming.. SIAM J. Optim. 8: 769–796

    Article  MATH  Google Scholar 

  28. Toh K.C., Phoon K.K. and Chan S.H. (2004). Block preconditioners for symmetric indefinite linear systems. Int. J. Numer. Methods Eng. 60: 1361–1381

    Article  MATH  Google Scholar 

  29. Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal–dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pacific J. Optim. (in press)

  30. Van Loan C.F. (2000). The ubiquitous Kronecker product. J. Comput. Appl. Math. 123: 85–100

    Article  MATH  Google Scholar 

  31. Wathen, A.J., Fischer, B., Silvester, D.J.: The convergence of iterative solution methods for symmetric and indefinite linear systems. In: Griffiths, D.F., Watson, G.A., (eds.) Numerical Analysis 1997. Addison Wesley Longman, Harlow, pp. 230–243 (1997)

  32. Zhou G.L. and Toh K.C. (2004). Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming. Math. Program. 99: 261–282

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kim-Chuan Toh.

Additional information

Research supported in part by Academic Research Grant R146-000-076-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toh, KC. An inexact primal–dual path following algorithm for convex quadratic SDP. Math. Program. 112, 221–254 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2000)