Skip to main content
Log in

Set Intersection Theorems and Existence of Optimal Solutions

  • Published:
Mathematical Programming Submit manuscript

Abstract

The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We consider asymptotic directions of a sequence of closed sets, and introduce associated notions of retractive, horizon, and critical directions, based on which we provide new conditions that guarantee the nonemptiness of the corresponding intersection. We show how these conditions can be used to obtain simple and unified proofs of some known results on existence of optimal solutions, and to derive some new results, including a new extension of the Frank–Wolfe Theorem for (nonconvex) quadratic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender A., Teboulle M. (2003) Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Auslender A. (1996) Non coercive optimization problems. Math. Oper. Res. 21, 769–782

    MATH  MathSciNet  Google Scholar 

  3. Auslender A. (1997) How to deal with the unbounded in optimization: theory and algorithms. Math. Program. 79, 3–18

    Article  MathSciNet  Google Scholar 

  4. Auslender A. (2000) Existence of optimal solutions and duality results under weak conditions. Math. Program. 88, 45–59

    Article  MATH  MathSciNet  Google Scholar 

  5. Bank B., Guddat J., Klatte D., Kummer B., Tammer K. (1983) Nonlinear Parametric Optimization. Birkhäuser Verlag, Basel-Boston

    Google Scholar 

  6. Bank B., Hansel R. (1984) Stability of mixed-integer quadratic programming problems. Math. Program. Study 21, 1–17

    MATH  MathSciNet  Google Scholar 

  7. Bank B., Mandel R. (1988) Parametric Integer Optimization. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  8. Belousov E.G. (1977) Introduction to Convex Analysis and Integer Programming (in Russian). Moscow University Publishers, Moscow

    Google Scholar 

  9. Belousov E.G., Andronov V.G. (1993) Solvability and Stability of Problems of Polynomial Programming (in Russian). Moscow University Publishers, Moscow

    Google Scholar 

  10. Belousov E.G., Klatte D. (2002) A Frank–Wolfe type theorem for convex polynomial programs. Comput. Optim. Appl. 22, 37–48

    Article  MATH  MathSciNet  Google Scholar 

  11. Bertsekas, D.P., with Nedić, A., Ozdaglar, A.E. Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

  12. Blum E., Oettli W. (1972) Direct proof of the existence theorem for quadratic programming. Oper. Res. 20, 165–167

    Article  MATH  MathSciNet  Google Scholar 

  13. Dedieu J.P. (1977) Cone asymptotiques d’un ensemble non convexe. application a l’ optimization. C.R. Acad. Sci. 287, 91–103

    Google Scholar 

  14. Dedieu J.P. (1979) Cones asymptotiques d’ ensembles non convexes. Bulletin Societe Mathematiques de France, Analyse Non Convexe, Memoire 60, 31–44

    MathSciNet  Google Scholar 

  15. Eaves B.C. (1971) On quadratic programming. Management Sci. 17, 698–711

    MATH  Google Scholar 

  16. Frank M., Wolfe P. (1956) An algorithm for quadratic programming. Naval Res. Logistics Quart. 3, 95–110

    MathSciNet  Google Scholar 

  17. Fenchel W. (1951) Convex Cones, Sets, and Functions. Mimeographed Notes, Princeton University, Princeton

    Google Scholar 

  18. Helly E. (1921). Uber Systeme Linearer Gleichungen mit Unendlich Vielen Unbekannten. Monatschr. Math. Phys. 31, 60–91

    Article  MathSciNet  MATH  Google Scholar 

  19. Kummer B. (1977) Globale Stabilität quadratischer Optimierungsprobleme. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Math.-Nat. R. XXVI, 565–569

    MathSciNet  Google Scholar 

  20. Kummer B. (1981) Stability and weak duality in convex programming without regularity. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Math.-Nat. R. XXX, 381–386

    Google Scholar 

  21. Luo Z.-Q., Zhang S.Z. (1999) On the extension of Frank-Wolfe theorem. Comput. Optim. Appl. 13, 87–110

    Article  MATH  MathSciNet  Google Scholar 

  22. Mandel R. (1981) Über die Existenz von Lösungen ganzzahliger Optimierungsaufgaben. [On the Existence of Solutions of Integer Programming Problems] Math. Operationsforsch. Statist., Ser. Optim. 12, 33–39

    MATH  MathSciNet  Google Scholar 

  23. Pataki G. (2003) On the closedness of the linear image of a closed convex cone. Research Report TR-02-3, Department of Operations Research, University of North Carolina, Chapel Hill

    Google Scholar 

  24. Perold A.F. (1980) A generalization of the Frank–Wolfe theorem. Math. Program. 18, 215–227

    Article  MATH  MathSciNet  Google Scholar 

  25. Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  26. Rockafellar R.T. (1971) Ordinary convex programs without a duality gap. J. Optim. Theory Appl. 7, 143–148

    Article  MATH  MathSciNet  Google Scholar 

  27. Rockafellar R.T., Wets R.J.-B. (1998) Variational Analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  28. Terlaky T. (1985) On l p programming. Euro. J. Oper. Res. 22, 70–100

    Article  MATH  MathSciNet  Google Scholar 

  29. Tseng, P., Ozdaglar, A.E. Existence of global minima for constrained optimization. J. Optim. Theory Appl. 128, (2004) (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri P. Bertsekas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsekas, D.P., Tseng, P. Set Intersection Theorems and Existence of Optimal Solutions. Math. Program. 110, 287–314 (2007). https://doi.org/10.1007/s10107-006-0003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0003-6

Keywords

Mathematical subject classification (1991)

Navigation