Mathematical Programming

, Volume 106, Issue 3, pp 587–606 | Cite as

Minimizing Polynomials via Sum of Squares over the Gradient Ideal



A method is proposed for finding the global minimum of a multivariate polynomial via sum of squares (SOS) relaxation over its gradient variety. That variety consists of all points where the gradient is zero and it need not be finite. A polynomial which is nonnegative on its gradient variety is shown to be SOS modulo its gradient ideal, provided the gradient ideal is radical or the polynomial is strictly positive on the real gradient variety. This opens up the possibility of solving previously intractable polynomial optimization problems. The related problem of constrained minimization is also considered, and numerical examples are discussed. Experiments show that our method using the gradient variety outperforms prior SOS methods.


Polynomials Global Optimization Sum of Squares (SOS) Semidefinite Programming (SDP) Radical Ideal Variety Gradient Ideal Algebraic Geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer-Verlag, 2003Google Scholar
  2. 2.
    Berg, C.: The multidimensional moment problem and semi-groups. In: Moments in Mathematics, H.J. Landau (ed.), AMS, Providence, RI, 1980, pp 110–124Google Scholar
  3. 3.
    Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, Springer, 1998Google Scholar
  4. 4.
    Blekherman, G.: There are significantly more nonnegative polynomials than sums of squares. To appear in Israel Journal of MathematicsGoogle Scholar
  5. 5.
    Becker, E., Neuhaus, R.: Computation of real radicals of polynomial ideals. Computational algebraic geometry (Nice, 1992), 1–20, Progress in Mathematics, 109, Birkhäuser, Boston, MA, 1993Google Scholar
  6. 6.
    Becker, E., Neuhaus, R.: Computation of real radicals of polynomial ideals. II. J. Pure Appl. Algebra 124, 261–280 (1998)CrossRefGoogle Scholar
  7. 7.
    Cox, D.A., Little, J.B., D.O'Shea.: Ideals, Varieties and Algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997Google Scholar
  8. 8.
    Cox, D.A., Little, J.B., D.O'Shea.: Using Algebraic Geometry, Graduate Texts in Mathematics, Vol. 185. Springer-Verlag, New York, 1998Google Scholar
  9. 9.
    Corless, R.M., Gianni, P.M., Trager, B.M.: A reorder Schur factorization method for zero-dimensional polynomial systems with multiple roots. Proc. ACM Int. Symp. Symbolic and Algebraic Computation, Maui, Hawaii, 1997, pp 133–140Google Scholar
  10. 10.
    Curto, R.E., Fialkow, L.A.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352, 2825–2855 (2000)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York, 1995Google Scholar
  12. 12.
    Fortuna, E., Gianni, P., Trager, B.: Derivations and radicals of polynomial ideals over fields of arbitrary characteristic. Computer algebra (London, ON, 2001). J. Symbolic Comput. 33 (5), 609–625 (2002)Google Scholar
  13. 13.
    Grigoriev, D., Vorobjov, N. N., Jr. Solving systems of polynomial inequalities in subexponential time. J. Symbolic Comput. 5 (1–2), 37–64 (1988)Google Scholar
  14. 14.
    Hanzon, B., Jibetean, D.: Global minimization of a multivariate polynomial using matrix methods. J. Global Optimization 27, 1–23 (2003)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Henrion, D., Lasserre, J. B.: GloptiPoly: Global Optimization over Polynomials with Matlab and SeDuMi. Proceeding of the 41st IEEE Conference on Decision and Control (CDC'2002), Las Vegas, Nevada, December 10–13, 2002, pp 747–752Google Scholar
  16. 16.
    Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. Positive polynomials in control, D. Henrion, A. Garulli Eds., Lecture Notes on Control and Information Sciences, Vol. 312, Springer, Berlin, 2005, pp 293–310Google Scholar
  17. 17.
    Jibetean, D., Laurent, M.: Converging SDP bounds for global unconstrained polynomial optimization. Preprint, 2004. Website:
  18. 18.
    Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991, pp 195–205Google Scholar
  19. 19.
    Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (3), 796–817 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Laurent, M.: Semidefinite representations for finite varieties. To appear in Mathematical Programming. Website:
  21. 21.
    Marshall, M.: Optimization of polynomial functions. Canad. Math. Bull. 46, 575–587 (2003)MATHMathSciNetGoogle Scholar
  22. 22.
    Nesterov, Y.: Squared functional systems and optimization problems. High Performance Optimization H. Frenk et al. (eds.), Kluwer Academic Publishers, 2000, pp 405–440Google Scholar
  23. 23.
    Nie, J., Demmel, J. W.: Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares, to appear in J. Global Optimization, arXiv:math.OC/0411122Google Scholar
  24. 24.
    Nie, J., Demmel, J. W., Powers, V.: Representations of positive polynomials on non-compact semialgebraic sets via KKT ideals. Preprint, 2005Google Scholar
  25. 25.
    Nocedal, J., Wright, S. J.: Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999Google Scholar
  26. 26.
    Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D Thesis, California Institute of Technology, 2000Google Scholar
  27. 27.
    Parrilo, P., Sturmfels, B.: Minimizing polynomial functions, Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), S. Basu, L. Gonzalez-Vega (eds.), American Mathematical Society, 2003, pp 83–100Google Scholar
  28. 28.
    Parrilo, P.: Semidefinite Programming relaxations for semialgebraic problems. Math. Program. Ser. B 96 (2), 293–320 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Prajna, S., Papachristodoulou, A., Parrilo, P.: SOSTOOLS User's Guide.
  30. 30.
    Parrilo, P.: An explicit construction of distinguished representations of polynomials nonnegative over finite sets, If A Technical Report AUT02-02, March 2002Google Scholar
  31. 31.
    Putinar, M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 203–206 (1993)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. I-III. J. Symbolic Comput. 13 (3), 255–352 (1992)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Reznick, B.: Some concrete aspects of Hilbert's 17th problem. In Contemporary Mathematics, volume 253, American Mathematical Society, 2000, pp 251–272Google Scholar
  34. 34.
    Shafarevich. Basic algebraic geometry. Die Grundlehren der mathematischen Wissenschaften. Band 213. Springer-Verlag, 1974Google Scholar
  35. 35.
    L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review 38, 49–95 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Dept. of Math.Univ. of CaliforniaBerkeleyUSA
  2. 2.Dept. of Math. and EECSUniv. of CaliforniaBerkeleyUSA
  3. 3.Dept. of Math.Univ. of CaliforniaBerkeleyUSA

Personalised recommendations