Mathematical Programming

, Volume 106, Issue 3, pp 467–489 | Cite as

Static arbitrage bounds on basket option prices

Article

Abstract

We consider the problem of computing upper and lower bounds on the price of an European basket call option, given prices on other similar options. Although this problem is hard to solve exactly in the general case, we show that in some instances the upper and lower bounds can be computed via simple closed-form expressions, or linear programs. We also introduce an efficient linear programming relaxation of the general problem based on an integral transform interpretation of the call price function. We show that this relaxation is tight in some of the special cases examined before.

Keywords

Arbitrage Linear Programming Radon Transform Basket Options Moment Problems 

Mathematics Subject Classification (2000)

44A12 44A60 90C05 90C34 91B28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breeden, D.T., Litzenberger, R.H.: Price of state-contingent claims implicit in option prices. Journal of Business 51 (4), 621–651 (1978)CrossRefGoogle Scholar
  2. 2.
    Brigo, D., Mercurio, F.: Interest rate models, theory and practice. Springer Finance, 2001Google Scholar
  3. 3.
    Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Operations Research 50 (2), 358–374 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659 (1973)CrossRefGoogle Scholar
  5. 5.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, 2004Google Scholar
  6. 6.
    d'Aspremont, A.: Interest rate model calibration using semidefinite programming. Applied Mathematical Finance 10 (3), 183–213 (2003)CrossRefGoogle Scholar
  7. 7.
    Duffie, D.: Dynamic asset pricing theory. 2nd ed., Princeton University Press, Princeton, N.J., 1996Google Scholar
  8. 8.
    El Karoui, N., Quenez, M.C.: Programmation dynamique et évaluation des actifs contingents en marchés incomplets. Comptes Rendus de l'Académie des Sciences de Paris, Série I 313, 851–854 (1991)MATHGoogle Scholar
  9. 9.
    El Karoui, N., Quenez, M.C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM Journal of Control and Optimization 33, 29–66 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Helgason, S.: The Radon transform. 2nd ed., Birkhauser, Boston, 1999 Progress in mathematics (Boston, Mass.) ; vol. 5 Google Scholar
  11. 11.
    Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods and applications. SIAM Review 35 (3), 380–429 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hobson, D., Laurence, P., Wang, T.H.: Static arbitrage upper bounds for the prices of basket option. Working paper (2004)Google Scholar
  13. 13.
    Henkin, G., Shananin, A.: Bernstein theorems and Radon transform, application to the theory of production functions. American Mathematical Society: Translation of mathematical monographs 81, 189–223 (1990)MATHMathSciNetGoogle Scholar
  14. 14.
    Karatzas, I., Shreve, S.E.: Methods of mathematical finance. Applications of mathematics, vol. 39, Springer, New York, 1998Google Scholar
  15. 15.
    Laurent, J.P., Leisen, D.: Building a consistent pricing model from observed option prices. In: Quantitative Analysis in Financial Markets Avellaneda, M. (ed.) World Scientific Publishing, 2000Google Scholar
  16. 16.
    Laurence P., Wang, T.H.: Sharp upper and lower bounds for basket options. To appear in Applied Mathematical Finance (2003)Google Scholar
  17. 17.
    Laurence P., Wang, T.H.: What's a basket worth? Risk, 2004Google Scholar
  18. 18.
    Rebonato, R.: Interest-rate options models. Financial Engineering, Wiley, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.ORFEPrinceton UniversityPrincetonUSA
  2. 2.Department of Electrical Engineering and Computer Sciences, Cory HallUniversity of CaliforniaBerkeleyUSA

Personalised recommendations