Skip to main content
Log in

New interval methods for constrained global optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

Interval analysis is a powerful tool which allows to design branch-and-bound algorithms able to solve many global optimization problems. In this paper we present new adaptive multisection rules which enable the algorithm to choose the proper multisection type depending on simple heuristic decision rules. Moreover, for the selection of the next box to be subdivided, we investigate new criteria. Both the adaptive multisection and the subinterval selection rules seem to be specially suitable for being used in inequality constrained global optimization problems. The usefulness of these new techniques is shown by computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berner, S.: New results on verified global optimization. Computing 57, 323–343 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Casado, L.G.: Optimización global basada en aritmética de intervalos y ramificación y acotación: paralelización, Ph.D. Thesis, University of Málaga, Spain (in Spanish), 1999

  3. Casado, L.G., García, I.: New load balancing criterion for a parallel interval global optimization algorithms, Proceedings of the 16th IASTED International Conference, Garmisch-Partenkirchen, Germany, 1998, pp. 321–323

  4. Casado, L.G., García, I., Csendes, T.: A new multisection technique in interval methods for global optimization. Computing 65, 263–269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casado, L.G., García, I., Csendes, T.: A heuristic rejection criterion in interval global optimization algorithms. BIT 41, 683–692 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casado, L.G., Martínez, J.A., García, I.: Experimenting with a new selection criterion in a fast interval optimization algorithm. J. Global Optimization 19, 247–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Csallner, A.E.: Global optimization in separation network synthesis. Hungarian J. Industrial Chemistry 21, 303–308 (1993)

    Google Scholar 

  8. Csallner, A.E., Csendes, T.: On the convergence speed of interval methods for global optimization. Computers, Mathematics and Applications 31, 173–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Csallner, A.E., Csendes, T., Markót, M.Cs.: Multisection in interval branch–and–bound methods for global optimization I. Theoretical results. J. Global Optimization 16, 371–392 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Csendes, T.: Optimization methods for process network synthesis –- a case study. In: Christer Carlsson, Inger Eriksson (eds.), Global and multiple criteria optimization and information systems quality, Abo Academy, Turku, 1998, pp. 113–132

  11. Csendes, T.: New subinterval selection criteria for interval global optimization. J. Global Optimization 19, 307–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Csendes, T., Klatte, R., Ratz, D.: A posteriori direction selection rules for interval optimization methods. Central European J. Oper. Res. 8, 225–236 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Csendes, T., Pintér, J.: The impact of accelerating tools on the interval subdivision algorithm for global optimization. European J. Oper. Res. 65, 314–320 (1993)

    Article  MATH  Google Scholar 

  14. Csendes, T., Ratz, D.: A review of subdivision direction selection in interval methods for global optimization. ZAMM 76, 319–322 (1996)

    MATH  Google Scholar 

  15. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numerical Analysis 34, 922–938 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drezner, Z.: Facility location: a survey of applications and methods. Springer-Verlag, Berlin, 1995

  17. Fernández, J., Fernández, P., Pelegrín, B.: A continuous location model for siting a non-noxious undesirable facility within a geographical region. European J. Operational Res. 121, 259–274 (2000)

    Article  MATH  Google Scholar 

  18. Fernández, J., Fernández, P., Pelegrín, B.: Estimating actual distances by norm functions: a comparison between the l k , p -norm and the l b 1 , b 2 -norm and a study about the selection of the data set. Comput. Oper. Res. 29, 609–623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fernández, J., Pelegrín, B.: Using interval analysis for solving planar single-facility location problems: new discarding tests. J. Global Optimization 19, 61–81 (2001)

    Article  MATH  Google Scholar 

  20. Goos, A., Ratz, D.: Praktische Realisierung und Test eines Verifikationsverfahrens zur Lösung globaler Optimierungsprobleme mit Ungleichungsnebenbedingungen, Forschungsschwerpunkt Computerarithmetik, Intervallrechnung und Numerische Algorithmen mit Ergebnisverifikation, technical report (available at http://www.uni-karlsruhe.de/~iam/html/reports.html), 1997

  21. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for verified computing. Springer-Verlag, Berlin, 1995

  22. Hansen, E.: Global optimization using interval analysis – the multidimensional case. Numerische Mathematik 34, 247–270 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York, 1992

  24. Horst, R., Pardalos, P.M. (eds.): Handbook of global optimization. Kluwer, Dordrecht, 1995

  25. Horst, R., Tuy, H.: Global optimization. Deterministic approaches. Springer-Verlag, Berlin, 1996

  26. Hua, J.Z., Brennecke, J.F., Stadtherr, M.A.: Enhanced interval analysis for phase stability: cubic equation of state models. Industrial Engineering Chemical Research 37, 1519–1527 (1998)

    Article  Google Scholar 

  27. Kearfott, R.B.: Rigorous global search: continuous problems. Kluwer, Dordrecht, 1996

  28. Kearfott, R.B.: Test results for an interval branch and bound algorithm for equality-constrained optimization, in: State of the art in global optimization, Kluwer, Dordrecht, pp. 181–199, 1996

  29. Kearfott, R.B.: On verifying feasibility in equality constrained optimization problems, technical report (available at http://interval.louisiana.edu/preprints.html), 1996

  30. Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83, 89–100 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C-XSC – A C++ class library for extended scientific computing. Springer-Verlag, Heidelberg, 1993

  32. Knüppel, O.: PROFIL/BIAS –- a fast interval library. Computing 53, 277–287 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities location: models and methods. North-Holland, New York, 1988

  34. Markót, M.Cs.: An interval method to validate optimal solutions of the “packing circles in a unit square” problems. Central European J. Oper. Res. 8, 63–78 (2000)

    MATH  Google Scholar 

  35. Markót, M.Cs., Csendes, T., Csallner, A.E.: Multisection in interval branch-and-bound methods for global optimization. II. Numerical tests. J. Global Optimization 16, 219–228 (2000)

    Article  MATH  Google Scholar 

  36. Ratschek, H., Rokne, J.: Computer methods for the range of functions. Ellis Horwood, Chichester, 1984

  37. Ratschek, H., Rokne, J.: New computer methods for global optimization. Ellis Horwood, Chichester, 1988

  38. Ratschek, H., Rokne, J.: Experiments using interval analysis for solving a circuit design problem. J. Global Optimization 3, 501–518 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ratschek, H., Voller, R.L.: What can interval analysis do for global optimization?. J. Global Optimization 1, 111–130 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ratz, D.: Box-splitting strategies for the interval Gauss-Seidel step in a global optimization method. Computing 53, 337–353 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ratz, D.: On branching rules in second-order branch-and-bound methods for global optimization. In: G. Alefeld, A. Frommer, B. Lang (eds.), Scientific computing and validated numerics, Akademie-Verlag, Berlin, 1996, pp. 221–227

  42. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. J. Global Optimization 7, 183–207 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vaidyanathan, R., El-Halwagi, M.: Global optimization of nonconvex nonlinear programs via interval analysis. Computers & Chemical Engineering 18, 889–897 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.Cs. Markót.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markót, M., Fernández, J., Casado, L. et al. New interval methods for constrained global optimization. Math. Program. 106, 287–318 (2006). https://doi.org/10.1007/s10107-005-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0607-2

Keywords

Mathematics Subject Classification (2000)

Navigation